Shock breakout in core-collapse supernovae and its neutrino signature

被引:309
作者
Thompson, TA
Burrows, A
Pinto, PA
机构
[1] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Theoret Astrophys Ctr, Berkeley, CA 94720 USA
[3] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA
关键词
neutrinos; radiative transfer; supernovae : general;
D O I
10.1086/375701
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present results from dynamical models of core-collapse supernovae in one spatial dimension, employing a newly developed Boltzmann neutrino radiation transport algorithm, coupled to Newtonian Lagrangian hydrodynamics and a consistent high-density nuclear equation of state. The transport method is multigroup, employs the Feautrier technique, uses the tangent-ray approach to resolve angles, is implicit in time, and is second-order accurate in space. We focus on shock breakout and follow the dynamical evolution of the cores of 11, 15, and 20 M-circle dot progenitors through collapse and the first 250 ms after bounce. The shock breakout burst is the signal event in core-collapse evolution, is the brightest phenomenon in astrophysics, and is largely responsible for the initial debilitation and stagnation of the bounce shock. As such, its detection and characterization could test fundamental aspects of the current collapse/supernova paradigm. We examine the effects on the emergent neutrino spectra, light curves, and mix of species ( particularly in the early postbounce epoch) of artificial opacity changes, the number of energy groups, the weak magnetism/recoil corrections, nucleon-nucleon bremsstrahlung, neutrino-electron scattering, and the compressibility of nuclear matter. Furthermore, we present the first high-resolution look at the angular distribution of the neutrino radiation field both in the semitransparent regime and at large radii and explore the accuracy with which our tangent-ray method tracks the free propagation of a pulse of radiation in a near vacuum. Finally, we fold the emergent neutrino spectra with the efficiencies and detection processes for a selection of modern underground neutrino observatories and argue that the prompt electron-neutrino breakout burst from the next galactic supernova is in principle observable and usefully diagnostic of fundamental collapse/supernova behavior. Although we are not in this study focusing on the supernova mechanism per se, our simulations support the theoretical conclusion ( already reached by others) that spherical (one-dimensional) supernovae do not explode when good physics and transport methods are employed.
引用
收藏
页码:434 / 456
页数:23
相关论文
共 64 条
[1]  
Abromowitz M., 1972, HDB MATH FUNCTIONS
[2]   Determining the supernova direction of its neutrinos [J].
Ando, S ;
Sato, K .
PROGRESS OF THEORETICAL PHYSICS, 2002, 107 (05) :957-966
[3]  
Beacom JF, 1998, PHYS REV D, V58, DOI 10.1103/PhysRevD.58.053010
[4]   Technique for direct eV-scale measurements of the mu and tau neutrino masses using supernova neutrinos [J].
Beacom, JF ;
Boyd, RN ;
Mezzacappa, A .
PHYSICAL REVIEW LETTERS, 2000, 85 (17) :3568-3571
[5]   REVIVAL OF A STALLED SUPERNOVA SHOCK BY NEUTRINO HEATING [J].
BETHE, HA ;
WILSON, JR .
ASTROPHYSICAL JOURNAL, 1985, 295 (01) :14-23
[6]   Neutrino absorption efficiency of an 40Ar detector from the β decay of 40Ti [J].
Bhattacharya, M ;
García, A ;
Kaloskamis, NI ;
Adelberger, EG ;
Swanson, HE ;
Anne, R ;
Lewitowicz, M ;
Saint-Laurent, MG ;
Trinder, W ;
Donzaud, C ;
Guillemaud-Mueller, D ;
Leenhardt, S ;
Mueller, AC ;
Pougheon, F ;
Sorlin, O .
PHYSICAL REVIEW C, 1998, 58 (06) :3677-3687
[7]   STELLAR CORE COLLAPSE - NUMERICAL-MODEL AND INFALL EPOCH [J].
BRUENN, SW .
ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 1985, 58 (04) :771-841
[8]   General relativistic effects in the core collapse supernova mechanism [J].
Bruenn, SW ;
De Nisco, KR ;
Mezzacappa, A .
ASTROPHYSICAL JOURNAL, 2001, 560 (01) :326-338
[9]   A new algorithm for supernova neutrino transport and some applications [J].
Burrows, A ;
Young, T ;
Pinto, P ;
Eastman, R ;
Thompson, TA .
ASTROPHYSICAL JOURNAL, 2000, 539 (02) :865-887
[10]   SUPERNOVA NEUTRINOS [J].
BURROWS, A .
ASTROPHYSICAL JOURNAL, 1988, 334 (02) :891-908