Activation of the phosphatidylinositol 3-kinase/protein kinase Akt pathway mediates nitric oxide-induced endothelial cell migration and angiogenesis

被引:227
作者
Kawasaki, K
Smith, RS
Hsieh, CM
Sun, JX
Chao, J
Liao, JK
机构
[1] Brigham & Womens Hosp, Div Cardiovasc, Vasc Med Res Unit, Boston, MA 02115 USA
[2] Harvard Univ, Sch Med, Boston, MA 02115 USA
[3] Med Univ S Carolina, Dept Biochem & Mol Biol, Charleston, SC 29425 USA
关键词
D O I
10.1128/MCB.23.16.5726-5737.2003
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
To test the hypothesis that the phosphatidylinositol 3-kinase (PI3 kinase)/protein kinase Akt signaling pathway is involved in nitric oxide (NO)-induced endothelial cell migration and angiogenesis, we treated human and bovine endothelial cells with NO donors, S-nitroso-L-glutathione (GSNO) and S-nitroso-N-penicillamine (SNAP). Both GSNO and SNAP increased Akt phosphorylation and activity, which were blocked by cotreatment with the PI3 kinase inhibitor wortmannin. The mechanism was due to the activation of soluble guanylyl cyclase because 8-bromo-cyclic GMP activated PI3 kinase and the soluble guanylyl cyclase inhibitor 1H-[1,2,4]oxadiazolo[4,3-alpha]quinoxalin-l-one (ODQ) blocked NO-induced PI3 kinase activity. Indeed, transfection with adenovirus containing endothelial cell NO synthase (eNOS) or protein kinase G (PKG) increased endothelial cell migration, which was inhibited by cotransfection with a dominant-negative mutant of PI3 kinase (dnPI3 kinase). In a rat model of hind limb ischemia, adenovirus-mediated delivery of human eNOS cDNA in adductor muscles resulted in time-dependent expression of recombinant eNOS, which was accompanied by significant increases in regional blood perfusion and capillary density. Coinjection of adenovirus carrying dnPI3 kinase abolished neovascularization in ischemic hind limb induced by eNOS gene transfer. These findings indicate that NO promotes endothelial cell migration and neovascularization via eGMP-dependent activation of PI3 kinase and suggest that this pathway is important in mediating NO-induced angiogenesis.
引用
收藏
页码:5726 / 5737
页数:12
相关论文
共 43 条
[1]   Mechanism of activation of protein kinase B by insulin and IGF-1 [J].
Alessi, DR ;
Andjelkovic, M ;
Caudwell, B ;
Cron, P ;
Morrice, N ;
Cohen, P ;
Hemmings, BA .
EMBO JOURNAL, 1996, 15 (23) :6541-6551
[2]   Overexpression of endothelial NO synthase induces angiogenesis in a co-culture model [J].
Babaei, S ;
Stewart, DJ .
CARDIOVASCULAR RESEARCH, 2002, 55 (01) :190-200
[3]   Nitric oxide and the regulation of gene expression [J].
Bogdan, C .
TRENDS IN CELL BIOLOGY, 2001, 11 (02) :66-75
[4]   S-Nitrosylation of proteins [J].
Broillet, MC .
CELLULAR AND MOLECULAR LIFE SCIENCES, 1999, 55 (8-9) :1036-1042
[5]   NEGATIVE FEEDBACK-REGULATION OF ENDOTHELIAL-CELL FUNCTION BY NITRIC-OXIDE [J].
BUGA, GM ;
GRISCAVAGE, JM ;
ROGERS, NE ;
IGNARRO, LJ .
CIRCULATION RESEARCH, 1993, 73 (05) :808-812
[6]   Mechanisms of angiogenesis and arteriogenesis [J].
Carmeliet, P .
NATURE MEDICINE, 2000, 6 (04) :389-395
[7]   Tyrosine phosphorylation of p85 relieves its inhibitory activity on phosphatidylinositol 3-kinase [J].
Cuevas, BD ;
Lu, YL ;
Mao, ML ;
Zhang, JY ;
LaPushin, R ;
Siminovitch, K ;
Mills, GB .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (29) :27455-27461
[8]   Cellular survival: a play in three Akts [J].
Datta, SR ;
Brunet, A ;
Greenberg, ME .
GENES & DEVELOPMENT, 1999, 13 (22) :2905-2927
[9]   Guanylate cyclase and the .NO/cGMP signaling pathway [J].
Denninger, JW ;
Marletta, MA .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 1999, 1411 (2-3) :334-350
[10]   Nitric oxide - an endothelial cell survival factor [J].
Dimmeler, S ;
Zeiher, AM .
CELL DEATH AND DIFFERENTIATION, 1999, 6 (10) :964-968