Fractional-order anisotropic diffusion for image denoising

被引:468
作者
Bai, Jian [1 ]
Feng, Xiang-Chu [1 ]
机构
[1] Xidian Univ, Dept Appl Math, Xian 710071, Peoples R China
关键词
anisotropic diffusion; image smoothing; fractional-order partial differential equation; fractional-order difference; image denoising;
D O I
10.1109/TIP.2007.904971
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper introduces a new class of fractional-order anisotropic diffusion equations for noise removal. These equations are Euler-Lagrange equations of a cost functional which is an increasing function of the absolute value of the fractional derivative of the image intensity function, so the proposed equations can be seen as generalizations of second-order and fourth-order anisotropic diffusion equations. We use the discrete Fourier transform to implement the numerical algorithm and give an iterative scheme in the frequency domain. It is one important aspect of the algorithm that it considers the input image as a periodic image. To overcome this problem, we use a folded algorithm by extending the image symmetrically about its borders. Finally, we list various numerical results on denoising real images. Experiments show that the proposed fractional-order anisotropic diffusion equations yield good visual effects and better signal-to-noise ratio.
引用
收藏
页码:2492 / 2502
页数:11
相关论文
共 36 条
[1]  
ADAMS RA, 1975, PURE APPL MATH SER, V65
[3]  
Bertalmio M., 2000, P SIGGRAPH NEW ORL, P23
[4]  
BLOMGREN P, 1997, P IEEE INT C IM PROC, V3, P384
[5]   Adaptive smoothing respecting feature directions [J].
Carmona, RA ;
Zhong, SF .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 1998, 7 (03) :353-358
[6]   IMAGE SELECTIVE SMOOTHING AND EDGE-DETECTION BY NONLINEAR DIFFUSION [J].
CATTE, F ;
LIONS, PL ;
MOREL, JM ;
COLL, T .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1992, 29 (01) :182-193
[7]   Image recovery via total variation minimization and related problems [J].
Chambolle, A ;
Lions, PL .
NUMERISCHE MATHEMATIK, 1997, 76 (02) :167-188
[8]   High-order total variation-based image restoration [J].
Chan, T ;
Marquina, A ;
Mulet, P .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2000, 22 (02) :503-516
[9]  
CHAN TF, 4 ORDER DUAL MEHTOD
[10]  
CHANGHASNAIN CJ, 2001, SPIE OE MAGAZINE, V1, P30