Progress in the discovery of polo-like kinase inhibitors

被引:104
作者
McInnes, C [1 ]
Mezna, M [1 ]
Fischer, PM [1 ]
机构
[1] Cyclacel Ltd, Dundee DD1 5JJ, Scotland
关键词
polo like kinase; mitosis; inhibitor; homology model; docking;
D O I
10.2174/1568026053507660
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
Polo-like kinases (PLKs) are key enzymes that control mitotic entry of proliferating cells and regulate many aspects of mitosis necessary for successful cytokinesis. Of the four known human PLKs, PLK1 is the best characterized and is overexpressed in many tumour types with aberrant elevation frequently constituting a prognostic indicator of poor disease outcome. Despite the fact that PLK1 has been regarded as a validated mitotic cancer target for a number of years, very few reports of small-molecule PLK inhibitors have appeared to date. In order to provide a starting point for the discovery and development of selective PLK inhibitors, we have characterized a number of known generic kinase inhibitors with hitherto unknown activity against PLK1, as well as discovering novel inhibitors through structure-guided design. Previously, the only characterized biochemical PLK1 inhibitor was scytonemin, a symmetric indolic marine natural product that is a micromolar non-specific ATP competitor. In addition to the progress in the development of ATP-competitive small-molecule PLK inhibitors, recent reports on the use of antisense oligonucleotides (ASONs) and small interfering RNAs (siRNAs) directed against PLK1 have shown selective antiproliferative effects on cancer cells both in vitro and in vivo, producing phenotypes consistent with known PLK functions, and confirming that targeting PLKs with conventional small-molecule agents may be a valid and effective anticancer strategy. Here we present a progress update on the approaches taken so far in developing PLK inhibitors.
引用
收藏
页码:181 / 197
页数:17
相关论文
共 163 条
[1]  
Abrieu A, 1998, J CELL SCI, V111, P1751
[2]   pavarotti encodes a kinesin-like protein required to organize the central spindle and contractile ring for cytokinesis [J].
Adams, RR ;
Tavares, AAM ;
Salzberg, A ;
Bellen, HJ ;
Glover, DM .
GENES & DEVELOPMENT, 1998, 12 (10) :1483-1494
[3]   Relationship between flavonoid structure and inhibition of phosphatidylinositol 3-kinase: A comparison with tyrosine kinase and protein kinase C inhibition [J].
Agullo, G ;
GametPayrastre, L ;
Manenti, S ;
Viala, C ;
Remesy, C ;
Chap, H ;
Payrastre, B .
BIOCHEMICAL PHARMACOLOGY, 1997, 53 (11) :1649-1657
[4]   Polo-like kinase (Plk) 1: a novel target for the treatment of prostate cancer [J].
Ahmad, N .
FASEB JOURNAL, 2004, 18 (01) :5-7
[5]   Phosphorylation of the cohesin subunit Scc1 by Polo/Cdc5 kinase regulates sister chromatid separation in yeast [J].
Alexandru, G ;
Uhlmann, F ;
Mechtler, K ;
Poupart, MA ;
Nasmyth, K .
CELL, 2001, 105 (04) :459-472
[6]   Gapped BLAST and PSI-BLAST: a new generation of protein database search programs [J].
Altschul, SF ;
Madden, TL ;
Schaffer, AA ;
Zhang, JH ;
Zhang, Z ;
Miller, W ;
Lipman, DJ .
NUCLEIC ACIDS RESEARCH, 1997, 25 (17) :3389-3402
[7]   Polo-like kinase 1 (Plk1) inhibits p53 function by physical interaction and phosphorylation [J].
Ando, K ;
Ozaki, T ;
Yamamoto, H ;
Furuya, K ;
Hosoda, M ;
Hayashi, S ;
Fukuzawa, M ;
Nakagawara, A .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (24) :25549-25561
[8]  
ANDREWS CW, Patent No. 2004014899
[9]  
AVIES MD, 2001, NAT CELL BIOL, V3, P421
[10]   Cdc25C phosphorylation on serine 191 by Plk3 promotes its nuclear translocation [J].
Bahassi, ELM ;
Hennigan, RF ;
Myer, DL ;
Stambrook, PJ .
ONCOGENE, 2004, 23 (15) :2658-2663