Diffusion tensor imaging of neuro development in children and young adults

被引:280
作者
Snook, L
Paulson, LA
Roy, D
Phillips, L
Beaulieu, C
机构
[1] Univ Alberta, Fac Med & Dent, Dept Biomed Engn, Edmonton, AB T6G 2V2, Canada
[2] Univ Alberta, Ctr Res Literacy, Edmonton, AB T6G 2G5, Canada
基金
加拿大健康研究院; 加拿大自然科学与工程研究理事会;
关键词
diffusion tensor imaging; neurodevelopment; children;
D O I
10.1016/j.neuroimage.2005.03.016
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Diffusion tensor magnetic resonance imaging (DTI) was used to study regional changes in the brain's development from childhood (8-12 years, mean 11.1 +/- 1.3, N = 32) to young adulthood (21-27 years, mean 24.4 +/- 1.8, N = 28). Mean diffusivity, (Trace/3 apparent diffusion coefficient, ADC) and fractional anisotropy (FA) were measured in 30 regions of interest (ROIs) in 13 distinct brain structures. Correlational analysis was performed to detect changes within 8-12 years and within 21-27 years, and group analysis to compare childhood diffusion properties with young adult values. Increases of fractional anisotropy were seen in the germ of the corpus callosum, splenium of the corpus callosum, corona radiata, putamen, and head of the caudate nucleus within 8-12 years, and also between childhood and young adulthood. Reductions in Trace/3 ADC were observed in 9 of 13 structures within 8-12 years and into young adulthood as well. DTI demonstrates more widespread changes in the brain's microstructure with maturation than previous reports using conventional T1-weighted MRI scans. These findings suggest a continuation of the brain's microstructural development through adolescence. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:1164 / 1173
页数:10
相关论文
共 41 条
[1]   Normal aging in the central nervous system: quantitative MR diffusion-tensor analysis [J].
Abe, O ;
Aoki, S ;
Hayashi, N ;
Yamada, H ;
Kunimatsu, A ;
Mori, H ;
Yoshikawa, T ;
Okubo, T ;
Ohtomo, K .
NEUROBIOLOGY OF AGING, 2002, 23 (03) :433-441
[2]  
[Anonymous], 2000, COLOR ATLAS NEUROSCI
[3]   NORMAL MATURATION OF THE NEONATAL AND INFANT BRAIN - MR IMAGING AT 1.5 T [J].
BARKOVICH, AJ ;
KJOS, BO ;
JACKSON, DE ;
NORMAN, D .
RADIOLOGY, 1988, 166 (01) :173-180
[4]   Inferring microstructural features and the physiological state of tissues from diffusion-weighted images [J].
Basser, PJ .
NMR IN BIOMEDICINE, 1995, 8 (7-8) :333-344
[5]   The basis of anisotropic water diffusion in the nervous system - a technical review [J].
Beaulieu, C .
NMR IN BIOMEDICINE, 2002, 15 (7-8) :435-455
[6]  
BENES FM, 1994, ARCH GEN PSYCHIAT, V51, P477
[7]   Diffusion anisotropy in subcortical white matter and cortical gray matter: Changes with aging and the role of CSF-suppression [J].
Bhagat, YA ;
Beaulieu, C .
JOURNAL OF MAGNETIC RESONANCE IMAGING, 2004, 20 (02) :216-227
[8]   SEQUENCE OF CENTRAL-NERVOUS-SYSTEM MYELINATION IN HUMAN INFANCY .1. AN AUTOPSY STUDY OF MYELINATION [J].
BRODY, BA ;
KINNEY, HC ;
KLOMAN, AS ;
GILLES, FH .
JOURNAL OF NEUROPATHOLOGY AND EXPERIMENTAL NEUROLOGY, 1987, 46 (03) :283-301
[9]   White matter asymmetry in the human brain:: A diffusion tensor MRI study [J].
Büchel, C ;
Raedler, T ;
Sommer, M ;
Sach, M ;
Weiller, C ;
Koch, MA .
CEREBRAL CORTEX, 2004, 14 (09) :945-951
[10]   ANISOTROPIC DIFFUSION IN HUMAN WHITE MATTER - DEMONSTRATION WITH MR TECHNIQUES INVIVO [J].
CHENEVERT, TL ;
BRUNBERG, JA ;
PIPE, JG .
RADIOLOGY, 1990, 177 (02) :401-405