Side-on η2-peroxo-iron porphyrins are strong nucleophiles. In cytochrome P450-like aromatase and other enzymes, such species are postulated as the active oxidants. In cytochrome c oxidase, hemea3-peroxo, hemea3-hydroperoxo, or hemea3-(μ-peroxo)-copper species are proposed as transient intermediates forming prior to O-O bond cleavage. In this report, we describe (1) a facile method for reduction of a heme-O2 species [(F8TPP)FeIII(O2-)(S)] (2), generating the ferric peroxo porphyrin complex [(F8TPP)FeIII(O22-)]- (3) (UV-vis, THF: λmax = 435 (Soret), 540(sh), 561; EPR: g = 8.7, 4.2), and (2) that this can be subsequently reacted with a ligand-copper(II) complex, [CuII(TMPA)-(CH3CN)](ClO4)2 (4), affording a heme-peroxo-copper heterobinuclear compound, [(F8TPP)FeII(O22-)-CuII(TMPA)](ClO4) (5). Generation of [(F8TPP)FeIII(O22-)]- (3) using cobaltocene as a one-electron reductant was monitored by UV-vis, EPR, and 1H NMR spectroscopies. Reaction between 3 and 4 was followed by UV-vis spectroscopy, and the product 5 could be precipitated and characterized. Coordination by copper(II) in 5 makes possible further reduction of the μ-peroxo complex by cobaltocene yielding the μ-oxo analogue, [(F8TPP)FeIII(O2-)-CuII(TMPA)](ClO4) (6). Copyright © 2003 American Chemical Society.