Exact quantum jump approach to open systems in bosonic and spin baths

被引:62
作者
Breuer, HP [1 ]
机构
[1] Univ Freiburg, Inst Phys, D-79104 Freiburg, Germany
[2] Carl von Ossietzky Univ Oldenburg, Inst Phys, D-26111 Oldenburg, Germany
来源
PHYSICAL REVIEW A | 2004年 / 69卷 / 02期
关键词
D O I
10.1103/PhysRevA.69.022115
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A general method is developed which enables the exact treatment of the non-Markovian quantum dynamics of open systems through a Monte Carlo simulation technique. The method is based on a stochastic formulation of the von Neumann equation of the composite system and employs a pair of product states following a Markovian random jump process. The performance of the method is illustrated by means of stochastic simulations of the dynamics of open systems interacting with a Bosonic reservoir at zero temperature and with a spin bath in the strong coupling regime.
引用
收藏
页数:8
相关论文
共 26 条
[1]  
Alicki R., 2007, Volume 717 of Lecture Notes in Physics, V717
[2]  
Breuer H.-P., 2002, THEORY OPEN QUANTUM
[3]   Stochastic wave-function method for non-Markovian quantum master equations [J].
Breuer, HP ;
Kappler, B ;
Petruccione, F .
PHYSICAL REVIEW A, 1999, 59 (02) :1633-1643
[4]  
BREUER HP, QUANTPH0309114
[5]   PATH INTEGRAL APPROACH TO QUANTUM BROWNIAN-MOTION [J].
CALDEIRA, AO ;
LEGGETT, AJ .
PHYSICA A, 1983, 121 (03) :587-616
[6]  
Carmichael H, 1993, LECT NOTES PHYS M, Vm18
[7]   An exact stochastic field method for the interacting Bose gas at thermal equilibrium [J].
Carusotto, I ;
Castin, Y .
JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2001, 34 (23) :4589-4608
[8]   N-boson time-dependent problem: A reformulation with stochastic wave functions [J].
Carusotto, I. ;
Castin, Y. ;
Dalibard, J. .
Physical Review A - Atomic, Molecular, and Optical Physics, 2001, 63 (02) :023606-023601
[9]   WAVE-FUNCTION APPROACH TO DISSIPATIVE PROCESSES IN QUANTUM OPTICS [J].
DALIBARD, J ;
CASTIN, Y ;
MOLMER, K .
PHYSICAL REVIEW LETTERS, 1992, 68 (05) :580-583
[10]  
Davis M., 1993, MARKOV MODELS OPTIMI