Field theory on noncommutative spacetimes: Quasiplanar Wick products

被引:37
作者
Bahns, D
Doplicher, S
Fredenhagen, K
Piacitelli, G
机构
[1] Univ Hamburg, Inst Theoret Phys 2, D-22761 Hamburg, Germany
[2] Univ Roma La Sapienza, Dipartimento Matemat, I-00185 Rome, Italy
来源
PHYSICAL REVIEW D | 2005年 / 71卷 / 02期
关键词
D O I
10.1103/PhysRevD.71.025022
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We give a definition of admissible counterterms appropriate for massive quantum field theories on the noncommutative Minkowski space, based on a suitable notion of locality. We then define products of fields of arbitrary order, the so-called quasiplanar Wick products, by subtracting only such admissible counterterms. We derive the analogue of Wick's theorem and comment on the consequences of using quasiplanar Wick products in the perturbative expansion.
引用
收藏
页码:025022 / 1
页数:12
相关论文
共 11 条
[1]   General properties of non-commutative field theories [J].
Alvarez-Gaumé, L ;
Vázquez-Mozo, MA .
NUCLEAR PHYSICS B, 2003, 668 (1-2) :293-321
[2]   Ultraviolet finite quantum field theory on quantum spacetime [J].
Bahns, D ;
Doplicher, S ;
Fredenhagen, K ;
Piacitelli, G .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2003, 237 (1-2) :221-241
[3]   On the unitarity problem in space/time noncommutative theories [J].
Bahns, D ;
Doplicher, S ;
Fredenhagen, K ;
Piacitelli, G .
PHYSICS LETTERS B, 2002, 533 (1-2) :178-181
[4]  
BAHNS D, 2003, THESIS HAMBURG
[5]  
Chepelev I, 2001, J HIGH ENERGY PHYS
[6]   THE QUANTUM STRUCTURE OF SPACETIME AT THE PLANCK-SCALE AND QUANTUM-FIELDS [J].
DOPLICHER, S ;
FREDENHAGEN, K ;
ROBERTS, JE .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1995, 172 (01) :187-220
[7]   Divergencies in a field theory on quantum space [J].
Filk, T .
PHYSICS LETTERS B, 1996, 376 (1-3) :53-58
[8]   Trouble with space-like noncommutative field theory [J].
Gayral, V ;
Gracia-Bondía, JM ;
Ruiz, FR .
PHYSICS LETTERS B, 2005, 610 (1-2) :141-146
[9]  
KRISTENSEN P, 1952, K DAN VIDENSK SELSK, V27, P1
[10]   Spectral representation and dispersion relations in field theory on noncommutative space [J].
Liao, Y ;
Sibold, K .
PHYSICS LETTERS B, 2002, 549 (3-4) :352-361