Understanding the Role of Minor Molybdenum Doping in LiNi0.5Co0.2Mn0.3O2 Electrodes: from Structural and Surface Analyses and Theoretical Modeling to Practical Electrochemical Cells

被引:114
作者
Breuer, Ortal [1 ]
Chakraborty, Arup [1 ]
Liu, Jing [2 ]
Kravchuk, Tatyana [3 ]
Burstein, Larisa [5 ]
Grinblat, Judith [1 ]
Kauffman, Yaron [4 ]
Gladkih, Alexandr [5 ]
Nayak, Prasant [1 ]
Tsubery, Merav [1 ]
Frenkel, Anatoly I. [6 ]
Talianker, Michael [7 ]
Major, Dan T. [1 ]
Markovsky, Boris [1 ]
Aurbach, Doron [1 ]
机构
[1] Bar Ilan Univ, Dept Chem, IL-52900 Ramat Gan, Israel
[2] Manhattan Coll, Dept Phys, Riverdale, NY 10471 USA
[3] Technion Israel Inst Technol, Solid State Inst, IL-32000 Haifa, Israel
[4] Technion Israel Inst Technol, Dept Mat Sci & Engn, IL-32000 Haifa, Israel
[5] Tel Aviv Univ, Wolfson Appl Mat Res Ctr, IL-69978 Tel Aviv, Israel
[6] SUNY Stony Brook, Dept Mat Sci & Chem Engn, Stony Brook, NY 11794 USA
[7] Ben Gurion Univ Negev, Dept Mat Engn, IL-84105 Beer Sheva, Israel
基金
美国国家科学基金会;
关键词
Li-ion batteries; Ni-rich NCM cathodes; Mo6+ doping; computational modeling; electrochemical behavior; LITHIUM-ION BATTERIES; LAYERED CATHODE MATERIALS; TOTAL-ENERGY CALCULATIONS; NICKEL COBALT OXIDE; HIGH CUTOFF VOLTAGE; WAVE BASIS-SET; NI-RICH; THERMAL-STABILITY; 1ST PRINCIPLES; PERFORMANCE;
D O I
10.1021/acsami.8b09795
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Doping LiNi0.5Co0.2Mn0.3O2 (NCM523) cathode material by small amount of Mo6+ ions, around 1 mol %, affects pronouncedly its structure, surface properties, and electronic and electrochemical behavior. Cathodes comprising Mo6+-doped NCM523 exhibited in Li cells higher specific capacities, higher rate capabilities, lower capacity fading, and lower charge-transfer resistance that relates to a more stable electrode/solution interface due to doping. This, in turn, is ascribed to the fact that the Mo6+ ions tend to concentrate more at the surface, as a result of a synthesis that always includes a necessary calcination, high-temperature stage. This phenomenon of the Mo dopant segregation at the surface in NCM523 material was discovered in the present work for the first time. It appears that Mo doping reduces the reactivity of the Ni-rich NCM cathode materials toward the standard electrolyte solutions of Li-ion batteries. Using density functional theory (DFT) calculations, we showed that Mo6+ ions are preferably incorporated at Ni sites and that the doping increases the amount of Ni2+ ions at the expense of Ni3+ ions, due to charge compensation, in accord with X-ray absorption fine structure (XAFS) spectroscopy measurements. Furthermore, DFT calculations predicted Ni-O bond length distributions in good agreement with the XAFS results, supporting a model of partial substitution of Ni sites by molybdenum.
引用
收藏
页码:29608 / 29621
页数:14
相关论文
共 67 条
[1]   Future generations of cathode materials: an automotive industry perspective [J].
Andre, Dave ;
Kim, Sung-Jin ;
Lamp, Peter ;
Lux, Simon Franz ;
Maglia, Filippo ;
Paschos, Odysseas ;
Stiaszny, Barbara .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (13) :6709-6732
[2]   Studies of Aluminum-Doped LiNi0.5Co0.2Mn0.3O2: Electrochemical Behavior, Aging, Structural Transformations, and Thermal Characteristics [J].
Aurbach, Doron ;
Srur-Lavi, Onit ;
Ghanty, Chandan ;
Dixit, Mudit ;
Haik, Ortal ;
Talianker, Michael ;
Grinblat, Yehudit ;
Leifer, Nicole ;
Lavi, Ronit ;
Major, Dan Thomas ;
Goobes, Gil ;
Zinigrad, Ella ;
Erickson, Evan M. ;
Kosa, Monica ;
Markovsky, Boris ;
Lampert, Jordan ;
Volkov, Aleksei ;
Shin, Ji-Yong ;
Garsuch, Arnd .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2015, 162 (06) :A1014-A1027
[3]   Structural Changes and Thermal Stability of Charged LiNixMnyCozO2 Cathode Materials Studied by Combined In Situ Time-Resolved XRD and Mass Spectroscopy [J].
Bak, Seong-Min ;
Hu, Enyuan ;
Zhou, Yongning ;
Yu, Xiqian ;
Senanayake, Sanjaya D. ;
Cho, Sung-Jin ;
Kim, Kwang-Bum ;
Chung, Kyung Yoon ;
Yang, Xiao-Qing ;
Nam, Kyung-Wan .
ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (24) :22594-22601
[4]  
Bard AJ., 2008, Electrochemical Dictionary, V2nd
[5]   Study of the local structure of LiNi0.33+δMn0.33+δCo0.33-2δO2 (0.025 ≤ δ ≤ 0.075) oxides [J].
Ben-Kamel, K. ;
Amdouni, N. ;
Mauger, A. ;
Julien, C. M. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2012, 528 :91-98
[6]   Correlation of oxygen non-stoichiometry to the instabilities and electrochemical performance of LiNi0.8Co0.1Mn0.1O2 utilized in lithium ion battery [J].
Bi, Yujing ;
Yang, Wenchao ;
Du, Rui ;
Zhou, Jingjing ;
Liu, Meng ;
Liu, Yang ;
Wang, Deyu .
JOURNAL OF POWER SOURCES, 2015, 283 :211-218
[7]  
Buyukburc A., 2016, TRB216DFD0006, P1
[8]   Aluminum-doped lithium nickel cobalt oxide electrodes for high-power lithium-ion batteries [J].
Chen, CH ;
Liu, J ;
Stoll, ME ;
Henriksen, G ;
Vissers, DR ;
Amine, K .
JOURNAL OF POWER SOURCES, 2004, 128 (02) :278-285
[9]   STRUCTURE AND ELECTROCHEMISTRY OF LI1+/-YNIO2 AND A NEW LI2NIO2 PHASE WITH THE NI(OH)2 STRUCTURE [J].
DAHN, JR ;
VONSACKEN, U ;
MICHAL, CA .
SOLID STATE IONICS, 1990, 44 (1-2) :87-97
[10]   In situ X-ray absorption spectroscopic study of Li1.05Ni0.35Co0.25Mn0.4O2 cathode material coated with LiCoO2 [J].
Deb, Aniruddha ;
Bergmann, Uwe ;
Cramer, Stephen P. ;
Cairns, Elton J. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2007, 154 (06) :A534-A541