Regulation of oxidative phosphorylation through parallel activation

被引:80
作者
Korzeniewski, Bemard [1 ]
机构
[1] Jagiellonian Univ, Fac Biochem Biophys & Biotechnol, PL-30387 Krakow, Poland
关键词
metabolism regulation; energy metabolism modeling; each-step activation; skeletal muscle; heart;
D O I
10.1016/j.bpc.2007.05.013
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
When the mechanical work intensity in muscle increases, the elevated ATP consumption rate must be matched by the rate of ATP production by oxidative phosphorylation in order to avoid a quick exhaustion of ATP. The traditional mechanism of the regulation of oxidative phosphorylation, namely the negative feedback involving [ADP] and [Pi] as regulatory signals, is not sufficient to account for various kinetic properties of the system in intact skeletal muscle and heart in vivo. Theoretical studies conducted using a dynamic computer model of oxidative phosphorylation developed previously strongly suggest the so-called each-step-activation (or parallel activation) mechanism, due to which all oxidative phosphorylation complexes are directly activated by some cytosolic factor/mechanism related to muscle contraction in parallel with the activation of ATP usage and substrate dehydrogenation by calcium ions. The present polemic article reviews and discusses the growing evidence supporting this mechanism and compares it with alternative mechanisms proposed in the literature. It is concluded that only the each-step-activation mechanism is able to explain the rich set of various experimental results used as a reference for estimating the validity and applicability of particular mechanisms. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:93 / 110
页数:18
相关论文
共 115 条
[1]   Simultaneous P-31 MRS of the soleus and gastrocnemius in Sherpas during graded calf muscle exercise [J].
Allen, PS ;
Matheson, GO ;
Zhu, G ;
Gheorgiu, D ;
Dunlop, RS ;
Falconer, T ;
Stanley, C ;
Hochachka, PW .
AMERICAN JOURNAL OF PHYSIOLOGY-REGULATORY INTEGRATIVE AND COMPARATIVE PHYSIOLOGY, 1997, 273 (03) :R999-R1007
[2]   MAXIMAL PERFUSION OF SKELETAL-MUSCLE IN MAN [J].
ANDERSEN, P ;
SALTIN, B .
JOURNAL OF PHYSIOLOGY-LONDON, 1985, 366 (SEP) :233-249
[3]   RELATION BETWEEN WORK AND PHOSPHATE METABOLITE IN THE INVIVO PACED MAMMALIAN HEART [J].
BALABAN, RS ;
KANTOR, HL ;
KATZ, LA ;
BRIGGS, RW .
SCIENCE, 1986, 232 (4754) :1121-1123
[4]  
Baniene R., 2005, BIOLOGIJA, V1, P20
[5]   A biophysical model of the mitochondrial respiratory system and oxidative phosphorylation [J].
Beard, DA .
PLOS COMPUTATIONAL BIOLOGY, 2005, 1 (04) :252-264
[6]   Modeling of oxygen transport and cellular energetics explains observations on in vivo cardiac energy metabolism [J].
Beard, Daniel A. .
PLOS COMPUTATIONAL BIOLOGY, 2006, 2 (09) :1093-1106
[7]   Maximum rate of oxygen uptake by human skeletal muscle in relation to maximal activities of enzymes in the Krebs cycle [J].
Blomstrand, E ;
Radegran, G ;
Saltin, B .
JOURNAL OF PHYSIOLOGY-LONDON, 1997, 501 (02) :455-460
[8]   Supramolecular structure of the mitochondrial oxidative phosphorylation system [J].
Boekema, Egbert J. ;
Braun, Hans-Peter .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2007, 282 (01) :1-4
[9]   Metabolic network control of oxidative phosphorylation - Multiple roles of inorganic phosphate [J].
Bose, S ;
French, S ;
Evans, FJ ;
Joubert, F ;
Balaban, RS .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (40) :39155-39165
[10]   Simultaneous measurements of mitochondrial NADH and Ca2+ during increased work in intact rat heart trabeculae [J].
Brandes, R ;
Bers, DM .
BIOPHYSICAL JOURNAL, 2002, 83 (02) :587-604