Patterns of protein oxidation in Arabidopsis seeds and during germination

被引:292
作者
Job, C
Rajjou, L
Lovigny, Y
Belghazi, M
Job, D [1 ]
机构
[1] Bayer CropSci, UMR 2847, Bayer CropSci Joint Lab, CNRS, Lyon, France
[2] INRA, UMR 6175, Serv Spectromet Masse Proteom, Nouzilly, France
关键词
D O I
10.1104/pp.105.062778
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Increased cellular levels of reactive oxygen species are known to occur during seed development and germination, but the consequences in terms of protein degradation are poorly characterized. In this work, protein carbonylation, which is an irreversible oxidation process leading to a loss of function of the modified proteins, has been analyzed by a proteomic approach during the first stages of Arabidopsis ( Arabidopsis thaliana) seed germination. In the dry mature seeds, the legumin- type globulins ( 12S cruciferins) were the major targets. However, the acidic alpha- cruciferin subunits were carbonylated to a much higher extent than the basic ( beta) ones, consistent with a model in which the beta- subunits are buried within the cruciferin molecules and the a- subunits are more exposed to the outside. During imbibition, various carbonylated proteins accumulated. This oxidation damage was not evenly distributed among seed proteins and targeted specific proteins as glycolytic enzymes, mitochondrial ATP synthase, chloroplastic ribulose bisphosphate carboxylase large chain, aldose reductase, methionine synthase, translation factors, and several molecular chaperones. Although accumulation of carbonylated proteins is usually considered in the context of aging in a variety of model systems, this was clearly not the case for the Arabidopsis seeds since they germinated at a high rate and yielded vigorous plantlets. The results indicate that the observed specific changes in protein carbonylation patterns are probably required for counteracting and/ or utilizing the production of reactive oxygen species caused by recovery of metabolic activity in the germinating seeds.
引用
收藏
页码:790 / 802
页数:13
相关论文
共 73 条
[1]   Crystal structure of soybean 11S globulin: Glycinin A3B4 homohexamer [J].
Adachi, M ;
Kanamori, J ;
Masuda, T ;
Yagasaki, K ;
Kitamura, K ;
Mikami, B ;
Utsumi, S .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (12) :7395-7400
[2]   Crystal structure of soybean proglycinin alaB1b homotrimer [J].
Adachi, M ;
Takenaka, Y ;
Gidamis, AB ;
Mikami, B ;
Utsumi, S .
JOURNAL OF MOLECULAR BIOLOGY, 2001, 305 (02) :291-305
[3]   DNA OXIDATIVE DAMAGE AND LIFE EXPECTANCY IN HOUSEFLIES [J].
AGARWAL, S ;
SOHAL, RS .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1994, 91 (25) :12332-12335
[4]   Active oxygen species and antioxidants in seed biology [J].
Bailly, C .
SEED SCIENCE RESEARCH, 2004, 14 (02) :93-107
[5]   Bacterial senescence:: protein oxidation in non-proliferating cells is dictated by the accuracy of the ribosomes [J].
Ballesteros, M ;
Fredriksson, Å ;
Henriksson, J ;
Nyström, T .
EMBO JOURNAL, 2001, 20 (18) :5280-5289
[6]   Targeting detoxification pathways: an efficient approach to obtain plants with multiple stress tolerance? [J].
Bartels, D .
TRENDS IN PLANT SCIENCE, 2001, 6 (07) :284-286
[7]   Protein oxidation in aging, disease, and oxidative stress [J].
Berlett, BS ;
Stadtman, ER .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (33) :20313-20316
[8]   IMPROVED SILVER STAINING OF PLANT-PROTEINS, RNA AND DNA IN POLYACRYLAMIDE GELS [J].
BLUM, H ;
BEIER, H ;
GROSS, HJ .
ELECTROPHORESIS, 1987, 8 (02) :93-99
[9]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[10]  
Cabiscol E, 2000, J BIOL CHEM, V275, P27393