Biophysical properties and ionic signature of neuronal progenitors of the postnatal subventricular zone in situ

被引:70
作者
Wang, DD
Krueger, DD
Bordey, A
机构
[1] Yale Univ, Dept Neurosurg & Cellular & Mol Physiol, Sch Med, New Haven, CT 06520 USA
[2] Yale Univ, Interdepartmental Neurosci Grad Program, Sch Med, New Haven, CT 06520 USA
关键词
D O I
10.1152/jn.01116.2002
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Previous studies have reported the presence of neuronal progenitors in the subventricular zone (SVZ) and rostral migratory stream (RMS) of the postnatal mammalian brain. Although many studies have examined the survival and migration of progenitors after transplantation and the factors influencing their proliferation or differentiation, no information is available on the electrophysiological properties of these progenitors in a near-intact environment. Thus we performed whole cell and cell-attached patch-clamp recordings of progenitors in brain slices containing either the SVZ or the RMS from postnatal day 15 to day 25 mice. Both regions displayed strong immunoreactivity for nestin and neuron-specific class III beta-tubulin, and recorded cells displayed a morphology typical of the neuronal progenitors known to migrate throughout the SVZ and RMS to the olfactory bulb. Recorded progenitors had depolarized zero-current resting potentials ( mean more depolarized than - 28 mV), very high input resistances (about 4 GOmega), and lacked action potentials. Using the reversal potential of K+ currents through a cell-attached patch a mean resting potential of -59 mV was estimated. Recorded progenitors displayed Ca2+-dependent K+ currents and TEA-sensitive-delayed rectifying K+ (K-DR) currents, but lacked inward K+ currents and transient outward K+ currents. K DR currents displayed classical kinetics and were also sensitive to 4-aminopyridine and alpha-dendrotoxin, a blocker of Kv1 channels. Na+ currents were found in about 60% of the SVZ neuronal progenitors. No developmental changes were observed in the passive membrane properties and current profile of neuronal progenitors. Together these data suggest that SVZ neuronal progenitors display passive membrane properties and an ionic signature distinct from that of cultured SVZ neuronal progenitors and mature neurons.
引用
收藏
页码:2291 / 2302
页数:12
相关论文
共 64 条
[1]  
Attali B, 1997, J NEUROSCI, V17, P8234
[2]   Phenotypic differentiation during migration of dopaminergic progenitor cells to the olfactory bulb [J].
Baker, H ;
Liu, N ;
Chun, HS ;
Saino, S ;
Berlin, R ;
Volpe, B ;
Son, JH .
JOURNAL OF NEUROSCIENCE, 2001, 21 (21) :8505-8513
[3]   DIFFERENTIATION OF VOLTAGE-GATED POTASSIUM CURRENT AND MODULATION OF EXCITABILITY IN CULTURED AMPHIBIAN SPINAL NEURONS [J].
BARISH, ME .
JOURNAL OF PHYSIOLOGY-LONDON, 1986, 375 :229-250
[4]   Electrophysiological characteristics of reactive astrocytes in experimental cortical dysplasia [J].
Bordey, A ;
Lyons, SA ;
Hablitz, JJ ;
Sontheimer, H .
JOURNAL OF NEUROPHYSIOLOGY, 2001, 85 (04) :1719-1731
[5]   Postnatal development of ionic currents in rat hippocampal astrocytes in situ [J].
Bordey, A ;
Sontheimer, H .
JOURNAL OF NEUROPHYSIOLOGY, 1997, 78 (01) :461-477
[6]   Modulation of the Kv1.3 potassium channel by receptor tyrosine kinases [J].
Bowlby, MR ;
Fadool, DA ;
Holmes, TC ;
Levitan, IB .
JOURNAL OF GENERAL PHYSIOLOGY, 1997, 110 (05) :601-610
[7]   The neuronal progenitor cells of the forebrain subventricular zone:: Intrinsic properties in vitro and following transplantation [J].
Brock, SC ;
Bonsall, J ;
Luskin, MB .
METHODS-A COMPANION TO METHODS IN ENZYMOLOGY, 1998, 16 (03) :268-+
[8]  
Cameron HA, 1998, J NEUROBIOL, V36, P287, DOI 10.1002/(SICI)1097-4695(199808)36:2<287::AID-NEU13>3.3.CO
[9]  
2-E
[10]   Molecular diversity of K+ channels [J].
Coetzee, WA ;
Amarillo, Y ;
Chiu, J ;
Chow, A ;
Lau, D ;
McCormack, T ;
Moreno, H ;
Nadal, MS ;
Ozaita, A ;
Pountney, D ;
Saganich, M ;
Vega-Saenz de Miera, E ;
Rudy, B .
MOLECULAR AND FUNCTIONAL DIVERSITY OF ION CHANNELS AND RECEPTORS, 1999, 868 :233-285