Novel PI indices of hexagonal chains

被引:150
作者
Khadikar, PV
Kale, PP
Deshpande, NV
Karmarkar, S
Agrawal, VK
机构
[1] Laxmi Pest & Fumigat Pvt Ltd, Div Res, Indore 452007, Madhya Pradesh, India
[2] DA Univ, Sch Math, Indore 452001, Madhya Pradesh, India
[3] APS Univ, Dept Chem, Rewa 486003, India
关键词
PI index; hexagonal chains; unbranched catacondensed benzenoid; topological indices; polyphenylenes; zig-zag polyacenes;
D O I
10.1023/A:1010931213729
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The Padmakar-Ivan (PI) index of hexagonal chains (i.e., the molecular graphs of unbranched catacondensed benzenoid hydrocarbons) is examined. The index PI is a graph invariant defined as the summation of the sums of edges of n(eu) and n(ev) over all the edges of connected graph G, where n(eu) is the number of edges of G lying closer to u than to v and n(ev) is the number of edges of G lying closer to v than to u. An efficient calculation of formula for PI for hexagonal chains are put forward.
引用
收藏
页码:143 / 150
页数:8
相关论文
共 22 条
[1]  
[Anonymous], MATCH COMMUN MATH CO
[2]   CHEMICAL GRAPHS .5. ENUMERATION AND PROPOSED NOMENCLATURE OF BENZENOID CATA-CONDENSED POLYCYCLIC AROMATIC HYDROCARBONS [J].
BALABAN, AT ;
HARARY, F .
TETRAHEDRON, 1968, 24 (06) :2505-&
[3]   PREDICTING PROPERTIES OF MOLECULES USING GRAPH INVARIANTS [J].
BASAK, SC ;
NIEMI, GJ ;
VEITH, GD .
JOURNAL OF MATHEMATICAL CHEMISTRY, 1991, 7 (1-4) :243-272
[4]  
CLOPMAN G, 1991, J MATH CHEM, V7, P187
[5]  
DAS A, 1997, J SERB CHEM SOC, V62, P235
[6]  
GUDERMAN KD, 1981, Z NATURFORSCH A, V36, P1217
[7]  
Gutman I., 1992, TOPIC CURRENT CHEM, V162
[8]  
Gutman I., 1989, INTRO THEORY BENZONO
[9]  
Gutman I., 1994, GRAPH THEORY NOTES N, V27, P9
[10]  
Gutman I., 1990, TOPIC CURRENT CHEM, V153