Continuous control of chaos

被引:14
作者
Barrett, MD
机构
[1] Mathematics Department, University of Otago, Dunedin
来源
PHYSICA D | 1996年 / 91卷 / 04期
关键词
chaos; control; continuous control;
D O I
10.1016/0167-2789(95)00272-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present analytical results pertaining to the control of chaos via a continuous feedback as proposed by K. Pyragas. It is shown that the required feedback matrix exists and can be chosen so that other periodic orbits can be stabilized simply by changing the forcing term. Furthermore, it is shown that the method can be generalized to allow greater flexibility in choosing the forcing term.
引用
收藏
页码:340 / 348
页数:9
相关论文
共 16 条
[1]  
Barnett S, 1985, INTRO MATH CONTROL T
[2]  
FREEMAN WJ, 1991, SCI AM FEB, P34
[3]  
Himmelblau DM., 2018, APPL NONLINEAR PROGR
[4]   CONTROLS OF DYNAMIC FLOWS WITH ATTRACTORS [J].
JACKSON, EA .
PHYSICAL REVIEW A, 1991, 44 (08) :4839-4853
[5]   CONTROL OF LORENZ CHAOS [J].
LIU, YD ;
LEITE, JRR .
PHYSICS LETTERS A, 1994, 185 (01) :35-37
[6]  
MIKKILINENI R, 1976, NUMERICAL CODE CONST
[7]   CONTROLLING CHAOS [J].
OTT, E ;
GREBOGI, C ;
YORKE, JA .
PHYSICAL REVIEW LETTERS, 1990, 64 (11) :1196-1199
[8]   CONTINUOUS CONTROL OF CHAOS BY SELF-CONTROLLING FEEDBACK [J].
PYRAGAS, K .
PHYSICS LETTERS A, 1992, 170 (06) :421-428
[9]  
Reissig R, 1974, Non-linear differential equations of higher order
[10]   CONTROLLING CHAOTIC DYNAMIC-SYSTEMS [J].
ROMEIRAS, FJ ;
GREBOGI, C ;
OTT, E ;
DAYAWANSA, WP .
PHYSICA D, 1992, 58 (1-4) :165-192