On a class of distributive fuzzy implications

被引:47
作者
Baczynski, M [1 ]
机构
[1] Silesian Univ, Inst Math, PL-40007 Katowice, Poland
关键词
fuzzy implication; strict t-norm; conjugate implications; functional equation;
D O I
10.1142/S0218488501000764
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We deal with the system of functional equations I(x,T(y,z)) = T(I(x,y),I(x,z)), I(x, I(y,z)) = I(T(x,y),z), where function T: [0,1](2) --> [0,1] is a strict t-norm and I: [0, 1](2) --> [0,1] is an unknown function. Under some assumptions imposed on function I we obtain that I is almost conjugate with the Yager fuzzy implication.
引用
收藏
页码:229 / 238
页数:10
相关论文
共 11 条
[1]  
Baczynski M, 1999, LECT NOTES COMPUT SC, V1625, P299
[2]  
Baczynski M, 1999, LECT NOTES COMPUT SC, V1625, P287
[3]  
DEBAETS B, 1996, P EUFIT 96 AACH GERM, P27
[4]   FUZZY-SETS IN APPROXIMATE REASONING .1. INFERENCE WITH POSSIBILITY DISTRIBUTIONS [J].
DUBOIS, D ;
PRADE, H .
FUZZY SETS AND SYSTEMS, 1991, 40 (01) :143-202
[5]  
Fodor J.C., 1994, Fuzzy Preference Modelling and Multicriteria Decision Support
[6]  
Klement E. P., 2000, Triangular Norms
[7]  
Kuczma M, 1985, An introduction to the theory of functional equations and inequalities
[8]  
Schweizer B., 2011, Probabilistic metric spaces
[9]  
Smets P., 1987, International Journal of Approximate Reasoning, V1, P327, DOI 10.1016/0888-613X(87)90023-5
[10]   A new class of fuzzy implications. Axioms of fuzzy implication revisited [J].
Turksen, IB ;
Kreinovich, V ;
Yager, RR .
FUZZY SETS AND SYSTEMS, 1998, 100 (1-3) :267-272