In situ synthesis of ultrafine β-MnO2/polypyrrole nanorod composites for high-performance supercapacitors

被引:169
作者
Zang, Jianfeng [1 ]
Li, Xiaodong [1 ]
机构
[1] Univ S Carolina, Dept Mech Engn, Columbia, SC 29208 USA
基金
美国国家科学基金会;
关键词
CHARGE STORAGE MECHANISM; ELECTROCHEMICAL CAPACITORS; HYDROTHERMAL SYNTHESIS; ELECTRODES; MNO2; NANOWIRES; ENERGY; OXIDES;
D O I
10.1039/c1jm11491c
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We report a remarkable observation that is at odds with the established notion that beta-MnO2 was regarded as an undesirable candidate for supercapacitor applications. The specific capacitance of beta-MnO2 can reach as high as 294 F g(-1), which is comparable to the best crystallographic structure, like alpha-MnO2. The key is to substantially decrease the size of beta-MnO2 powders to ultra small regime. We demonstrate a facile, simple, and effective approach to synthesizing ultrafine (< 10 nm in diameter) beta-MnO2/polypyrrole nanorod composite powders for high-performance supercapacitor electrodes. Our observation may encourage a revisit of the other good or even bad candidate active materials if we can decrease their size to extremely small scales. In addition, the proposed synthetic mechanism and the developed synthetic strategy may provide design guidelines in synthesizing other energy storage materials toward ultrafine 1D nanostructures.
引用
收藏
页码:10965 / 10969
页数:5
相关论文
共 25 条
[1]   INNER AND OUTER ACTIVE SURFACE OF RUO2 ELECTRODES [J].
ARDIZZONE, S ;
FREGONARA, G ;
TRASATTI, S .
ELECTROCHIMICA ACTA, 1990, 35 (01) :263-267
[2]   Flexible Zn2SnO4/MnO2 Core/Shell Nanocable-Carbon Microfiber Hybrid Composites for High-Performance Supercapacitor Electrodes [J].
Bao, Lihong ;
Zang, Jianfeng ;
Li, Xiaodong .
NANO LETTERS, 2011, 11 (03) :1215-1220
[3]   Hydrothermal synthesis of hydrous crystalline RuO2 nanoparticles for supercapacitors [J].
Chang, KH ;
Hu, CC .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2004, 7 (12) :A466-A469
[4]   Shape-Controlled Synthesis of One-Dimensional MnO2 via a Facile Quick-Precipitation Procedure and its Electrochemical Properties [J].
Chen, Sheng ;
Zhu, Junwu ;
Han, Qiaofeng ;
Zheng, Zhijun ;
Yang, Yong ;
Wang, Xin .
CRYSTAL GROWTH & DESIGN, 2009, 9 (10) :4356-4361
[5]  
Cuentas-Gallegos AK, 2005, J NEW MAT ELECTR SYS, V8, P181
[6]   Effect of crystallographic structure of MnO2 on its electrochemical capacitance properties [J].
Devaraj, S. ;
Munichandraiah, N. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2008, 112 (11) :4406-4417
[7]   Carbon materials for the electrochemical storage of energy in capacitors [J].
Frackowiak, E ;
Béguin, F .
CARBON, 2001, 39 (06) :937-950
[8]   Microstructural Effects on Charge-Storage Properties in MnO2-Based Electrochemical Supercapacitors [J].
Ghodbane, Ouassim ;
Pascal, Jean-Louis ;
Favier, Frederic .
ACS APPLIED MATERIALS & INTERFACES, 2009, 1 (05) :1130-1139
[9]   Fabrication and characterization of iron oxide nanoparticles filled polypyrrole nanocomposites [J].
Guo, Zhanhu ;
Shin, Koo ;
Karki, Amar B. ;
Young, David P. ;
Kaner, Richard B. ;
Hahn, H. Thomas .
JOURNAL OF NANOPARTICLE RESEARCH, 2009, 11 (06) :1441-1452
[10]   Design and Synthesis of Hierarchical MnO2 Nanospheres/Carbon Nanotubes/Conducting Polymer Ternary Composite for High Performance Electrochemical Electrodes [J].
Hou, Ye ;
Cheng, Yingwen ;
Hobson, Tyler ;
Liu, Jie .
NANO LETTERS, 2010, 10 (07) :2727-2733