High-throughput in planta expression screening identifies a class II ethylene-responsive element binding factor-like protein that regulates plant cell death and non-host resistance

被引:56
作者
Nasir, KHB
Takahashi, Y
Ito, A
Saitoh, H
Matsumura, H
Kanzaki, H
Shimizu, T
Ito, M
Fujisawa, S
Sharma, PC
Ohme-Takagi, M
Kamoun, S
Terauchi, R
机构
[1] Iwate Biotechnol Res Ctr, Kitakami, Iwate 0240003, Japan
[2] Iwate Univ, United Grad Sch Agr Sci, Morioka, Iwate 0208550, Japan
[3] Max Planck Inst Plant Breeding Res, D-50829 Cologne, Germany
[4] Guru Gobind Singh Indraprastha Univ, Sch Biotechnol, New Delhi 110006, India
[5] Natl Inst Adv Ind Sci & Technol, Gene Funct Res Ctr, Tsukuba, Ibaraki 3058562, Japan
[6] Ohio State Univ, Ohio Agr Res & Dev Ctr, Dept Plant Pathol, Wooster, OH 44691 USA
关键词
cell death; class II ERF; repressor; SuperSAGE; VIGS; non-host resistance;
D O I
10.1111/j.1365-313X.2005.02472.x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
We performed high-throughput screening using the potato virus X (PVX) system to overexpress Nicotiana benthamiana genes in planta and identify positive regulators of cell death. This screening identified NbCD1, a novel class II ethylene-responsive element binding factor (ERF), as a potent inducer of the hypersensitive response (HR)-like cell death. NbCD1 expression was induced by treatments with INF1 elicitor and a non-host pathogen Pseudomonas cichorii. NbCD1 exhibited transcriptional repressor activity through its EAR motif, and this motif was necessary for NbCD1 to cause cell death. We identified 58 genes that displayed altered transcription following NbCD1 overexpression. NbCD1 overexpression downregulated the expression of HSR203, a negative regulator of hypersensitive death. Conditional expression of NbCD1 in Arabidopsis also caused cell death, indicating that NbCD1 downstream cascades are conserved in dicot plants. To further confirm the role of NbCD1 in defense, we used virus-induced gene silencing to demonstrate that NbCD1 is required for non-host resistance of N. benthamiana to the bacterial pathogen P. cichorii. Our data point to a model of transcriptional regulatory cascades. NbCD1 positively regulates cell death and contributes to non-host resistance, possibly by downregulating the expression of other defense response genes.
引用
收藏
页码:491 / 505
页数:15
相关论文
共 60 条
[1]   BASIC LOCAL ALIGNMENT SEARCH TOOL [J].
ALTSCHUL, SF ;
GISH, W ;
MILLER, W ;
MYERS, EW ;
LIPMAN, DJ .
JOURNAL OF MOLECULAR BIOLOGY, 1990, 215 (03) :403-410
[2]   Reactive oxygen intermediates mediate a systemic signal network in the establishment of plant immunity [J].
Alvarez, ME ;
Pennell, RI ;
Meijer, PJ ;
Ishikawa, A ;
Dixon, RA ;
Lamb, C .
CELL, 1998, 92 (06) :773-784
[3]   A glucocorticoid-mediated transcriptional induction system in transgenic plants [J].
Aoyama, T ;
Chua, NH .
PLANT JOURNAL, 1997, 11 (03) :605-612
[4]   The RAR1 interactor SGT1, an essential component of R gene-triggered disease resistance [J].
Azevedo, C ;
Sadanandom, A ;
Kitagawa, K ;
Freialdenhoven, A ;
Shirasu, K ;
Schulze-Lefert, P .
SCIENCE, 2002, 295 (5562) :2073-2076
[5]   JELLYFISH GREEN FLUORESCENT PROTEIN AS A REPORTER FOR VIRUS-INFECTIONS [J].
BAULCOMBE, DC ;
CHAPMAN, S ;
CRUZ, SS .
PLANT JOURNAL, 1995, 7 (06) :1045-1053
[6]   Constitutive expression of ETHYLENE-RESPONSE-FACTOR1 in Arabidopsis confers resistance to several necrotrophic fungi [J].
Berrocal-Lobo, M ;
Molina, A ;
Solano, R .
PLANT JOURNAL, 2002, 29 (01) :23-32
[7]   NDR1, A LOCUS OF ARABIDOPSIS-THALIANA THAT IS REQUIRED FOR DISEASE RESISTANCE TO BOTH A BACTERIAL AND A FUNGAL PATHOGEN [J].
CENTURY, KS ;
HOLUB, EB ;
STASKAWICZ, BJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (14) :6597-6601
[8]   The tomato transcription factor Pti4 regulates defense-related gene expression via GCC box and non-GCC box cis elements [J].
Chakravarthy, S ;
Tuori, RP ;
D'Ascenzo, MD ;
Fobert, PR ;
Després, C ;
Martin, GB .
PLANT CELL, 2003, 15 (12) :3033-3050
[9]   Floral dip:: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana [J].
Clough, SJ ;
Bent, AF .
PLANT JOURNAL, 1998, 16 (06) :735-743
[10]   Changes in hydrogen peroxide homeostasis trigger an active cell death process in tobacco [J].
Dat, JF ;
Pellinen, R ;
Beeckman, T ;
Van de Cotte, B ;
Langebartels, C ;
Kangasjärvi, J ;
Inzé, D ;
Van Breusegem, F .
PLANT JOURNAL, 2003, 33 (04) :621-632