Physics of the liquid-liquid critical point

被引:69
作者
Sciortino, F
La Nave, E
Tartaglia, P
机构
[1] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy
[2] Univ Roma La Sapienza, INFM Udr, I-00185 Rome, Italy
[3] Univ Roma La Sapienza, Ctr Stat Mech & Complex, I-00185 Rome, Italy
关键词
D O I
10.1103/PhysRevLett.91.155701
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Within the inherent structure thermodynamic formalism introduced by Stillinger and Weber [F. H. Stillinger and T. A. Weber, Phys. Rev. A 25, 978 (1982)], we address the basic question of the physics of the liquid-liquid transition and of density maxima observed in some complex liquids such as water by identifying, for the first time, the statistical properties of the potential energy landscape responsible for these anomalies. We also provide evidence of the connection between density anomalies and the liquid-liquid critical point. Within the simple (and physically transparent) model discussed, density anomalies do imply the existence of a liquid-liquid transition.
引用
收藏
页数:4
相关论文
共 32 条
[1]  
Angell C.A., 1982, WATER COMPREHENSIVE, V7, P1, DOI DOI 10.1007/978-1-4757-6952-4
[2]   THE MISSING TERM IN EFFECTIVE PAIR POTENTIALS [J].
BERENDSEN, HJC ;
GRIGERA, JR ;
STRAATSMA, TP .
JOURNAL OF PHYSICAL CHEMISTRY, 1987, 91 (24) :6269-6271
[3]  
Debenedetti P.G., 2001, Adv. Chem. Eng, V28, P21, DOI [doi:10.1016/S0065-2377(01)28003-X, DOI 10.1016/S0065-2377(01)28003-X]
[4]   The equation of state of an energy landscape [J].
Debenedetti, PG ;
Stillinger, FH ;
Truskett, TM ;
Roberts, CJ .
JOURNAL OF PHYSICAL CHEMISTRY B, 1999, 103 (35) :7390-7397
[5]   RANDOM-ENERGY MODEL - AN EXACTLY SOLVABLE MODEL OF DISORDERED-SYSTEMS [J].
DERRIDA, B .
PHYSICAL REVIEW B, 1981, 24 (05) :2613-2626
[6]   Intramolecular coupling as a mechanism for a liquid-liquid phase transition -: art. no. 011103 [J].
Franzese, G ;
Marqués, MI ;
Stanley, HE .
PHYSICAL REVIEW E, 2003, 67 (01) :7
[7]   Generic mechanism for generating a liquid-liquid phase transition [J].
Franzese, G ;
Malescio, G ;
Skibinsky, A ;
Buldyrev, SV ;
Stanley, HE .
NATURE, 2001, 409 (6821) :692-695
[8]   Why is the density of inherent structures of a Lennard-Jones-type system Gaussian? [J].
Heuer, A ;
Büchner, S .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2000, 12 (29) :6535-6541
[9]   Entropy, dynamics, and instantaneous normal modes in a random energy model [J].
Keyes, T .
PHYSICAL REVIEW E, 2000, 62 (06) :7905-7908
[10]   Solution of lattice gas models in the generalized ensemble on the Bethe lattice [J].
La Nave, E ;
Sastry, S ;
Sciortino, F ;
Tartaglia, P .
PHYSICAL REVIEW E, 1999, 59 (06) :6348-6355