Origins and Recombination of the Bacterial-Sized Multichromosomal Mitochondrial Genome of Cucumber

被引:252
作者
Alverson, Andrew J. [1 ]
Rice, Danny W. [1 ]
Dickinson, Stephanie [2 ]
Barry, Kerrie [3 ]
Palmer, Jeffrey D. [1 ]
机构
[1] Indiana Univ, Dept Biol, Bloomington, IN 47405 USA
[2] Indiana Univ, Dept Stat, Bloomington, IN 47408 USA
[3] Joint Genome Inst, Dept Energy, Walnut Creek, CA 94598 USA
基金
美国国家卫生研究院;
关键词
GROUP-I INTRON; CHLOROPLAST DNA; COMPLETE SEQUENCE; PHYSICAL MAP; GENE CONTENT; GUIDE RNAS; ORGANIZATION; BRASSICA; MOLECULES; EVOLUTION;
D O I
10.1105/tpc.111.087189
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Members of the flowering plant family Cucurbitaceae harbor the largest known mitochondrial genomes. Here, we report the 1685-kb mitochondrial genome of cucumber (Cucumis sativus). We help solve a 30-year mystery about the origins of its large size by showing that it mainly reflects the proliferation of dispersed repeats, expansions of existing introns, and the acquisition of sequences from diverse sources, including the cucumber nuclear and chloroplast genomes, viruses, and bacteria. The cucumber genome has a novel structure for plant mitochondria, mapping as three entirely or largely autonomous circular chromosomes (lengths 1556, 84, and 45 kb) that vary in relative abundance over a twofold range. These properties suggest that the three chromosomes replicate independently of one another. The two smaller chromosomes are devoid of known functional genes but nonetheless contain diagnostic mitochondrial features. Paired-end sequencing conflicts reveal differences in recombination dynamics among chromosomes, for which an explanatory model is developed, as well as a large pool of low-frequency genome conformations, many of which may result from asymmetric recombination across intermediate-sized and sometimes highly divergent repeats. These findings highlight the promise of genome sequencing for elucidating the recombinational dynamics of plant mitochondrial genomes.
引用
收藏
页码:2499 / 2513
页数:15
相关论文
共 77 条
[1]   Punctuated evolution of mitochondrial gene content: High and variable rates of mitochondrial gene loss and transfer to the nucleus during angiosperm evolution [J].
Adams, KL ;
Qiu, YL ;
Stoutemyer, M ;
Palmer, JD .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (15) :9905-9912
[2]   Comparisons among two fertile and three male-sterile mitochondrial genomes of maize [J].
Allen, James O. ;
Fauron, Christiane M. ;
Minx, Patrick ;
Roark, Leah ;
Oddiraju, Swetha ;
Lin, Guan Ning ;
Meyer, Louis ;
Sun, Hui ;
Kim, Kyung ;
Wang, Chunyan ;
Du, Feiyu ;
Xu, Dong ;
Gibson, Michael ;
Cifrese, Jill ;
Clifton, Sandra W. ;
Newton, Kathleen J. .
GENETICS, 2007, 177 (02) :1173-1192
[3]   The Mitochondrial Genome of the Legume Vigna radiata and the Analysis of Recombination across Short Mitochondrial Repeats [J].
Alverson, Andrew J. ;
Zhuo, Shi ;
Rice, Danny W. ;
Sloan, Daniel B. ;
Palmer, Jeffrey D. .
PLOS ONE, 2011, 6 (01)
[4]   Insights into the Evolution of Mitochondrial Genome Size from Complete Sequences of Citrullus lanatus and Cucurbita pepo (Cucurbitaceae) [J].
Alverson, Andrew J. ;
Wei, XiaoXin ;
Rice, Danny W. ;
Stern, David B. ;
Barry, Kerrie ;
Palmer, Jeffrey D. .
MOLECULAR BIOLOGY AND EVOLUTION, 2010, 27 (06) :1436-1448
[5]  
[Anonymous], 2012, Molecular Cloning: A Laboratory Manual
[6]  
Armstrong MR, 2000, GENETICS, V154, P181
[7]   Diversity of the Arabidopsis Mitochondrial Genome Occurs via Nuclear-Controlled Recombination Activity [J].
Arrieta-Montiel, Maria P. ;
Shedge, Vikas ;
Davila, Jaime ;
Christensen, Alan C. ;
Mackenzie, Sally A. .
GENETICS, 2009, 183 (04) :1261-1268
[8]   The mystery of the rings: structure and replication of mitochondrial genomes from higher plants [J].
Backert, S ;
Nielsen, BL ;
Borner, T .
TRENDS IN PLANT SCIENCE, 1997, 2 (12) :477-483
[9]   Phage T4-like intermediates of DNA replication and recombination in the mitochondria of the higher plant Chenopodium album (L.) [J].
Backert, S ;
Börner, T .
CURRENT GENETICS, 2000, 37 (05) :304-314
[10]  
Bartoszewski G, 2009, GENOME, V52, P299, DOI [10.1139/G09-006, 10.1139/g09-006]