Response of trunk muscle coactivation to changes in spinal stability
被引:176
作者:
Granata, KP
论文数: 0引用数: 0
h-index: 0
机构:
Univ Virginia, Kluge Childrens Rehabil Ctr, Mot Anal & Motor Performance Lab, Charlottesville, VA 22903 USAUniv Virginia, Kluge Childrens Rehabil Ctr, Mot Anal & Motor Performance Lab, Charlottesville, VA 22903 USA
Granata, KP
[1
]
Orishimo, KF
论文数: 0引用数: 0
h-index: 0
机构:
Univ Virginia, Kluge Childrens Rehabil Ctr, Mot Anal & Motor Performance Lab, Charlottesville, VA 22903 USAUniv Virginia, Kluge Childrens Rehabil Ctr, Mot Anal & Motor Performance Lab, Charlottesville, VA 22903 USA
Orishimo, KF
[1
]
机构:
[1] Univ Virginia, Kluge Childrens Rehabil Ctr, Mot Anal & Motor Performance Lab, Charlottesville, VA 22903 USA
The goal of this effort was to assess the neuromuscular response to changes in spinal stability. Biomechanical models suggest that antagonistic co-contraction may be related to stability constraints during lifting exertions. A two-dimensional biomechanical model of spinal equilibrium and stability was developed to predict trunk muscle co-contraction. as a function of lifting height and external load. The model predicted antagonistic co-contraction must increase with potential energy of the system even when the external moment was maintained at a constant value. Predicted trends were compared with measured electromyographic (EMG) data recorded during static trunk extension exertions wherein subjects held weighted barbells at specific horizontal and vertical locations relative to the lumbo-sacral spine junction. The task was designed to assure the applied moment was identical during each height condition, thereby changing potential energy without influencing moment. Measured EMG activity in the trunk flexors increased with height of the external load as predicted by the model. Gender difference in spinal stability were also noted. Results empirically demonstrate that the neuromuscular system responds to changes in spinal stability and provide insight into the recruitment of trunk muscle activity. (C) 2001 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:1117 / 1123
页数:7
相关论文
共 28 条
[1]
Bergmark A, 1989, Acta Orthop Scand Suppl, V230, P1