Structural basis for substrate loading in bacterial RNA polymerase

被引:291
作者
Vassylyev, Dmitry G.
Vassylyeva, Marina N.
Zhang, Jinwei
Palangat, Murali
Artsimovitch, Irina
Landick, Robert
机构
[1] Univ Alabama, Dept Biochem & Mol Genet, Sch Med, Birmingham, AL 35294 USA
[2] Univ Alabama, Sch Dent, Birmingham, AL 35294 USA
[3] Univ Wisconsin, Dept Biomol Chem, Madison, WI 53706 USA
[4] Univ Wisconsin, Dept Biochem, Madison, WI 53705 USA
[5] Univ Wisconsin, Dept Bacteriol, Madison, WI 53706 USA
[6] Ohio State Univ, Dept Microbiol, Columbus, OH 43210 USA
基金
美国国家卫生研究院;
关键词
D O I
10.1038/nature05931
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The mechanism of substrate loading in multisubunit RNA polymerase is crucial for understanding the general principles of transcription yet remains hotly debated. Here we report the 3.0-angstrom resolution structures of the Thermus thermophilus elongation complex (EC) with a non-hydrolysable substrate analogue, adenosine-5'-[(alpha,beta)-methyleno]-triphosphate (AMPcPP), and with AMPcPP plus the inhibitor streptolydigin. In the EC/AMPcPP structure, the substrate binds to the active ('insertion') site closed through refolding of the trigger loop (TL) into two alpha-helices. In contrast, the EC/AMPcPP/streptolydigin structure reveals an inactive ('preinsertion') substrate configuration stabilized by streptolydigin-induced displacement of the TL. Our structural and biochemical data suggest that refolding of the TL is vital for catalysis and have three main implications. First, despite differences in the details, the two-step preinsertion/insertion mechanism of substrate loading may be universal for all RNA polymerases. Second, freezing of the preinsertion state is an attractive target for the design of novel antibiotics. Last, the TL emerges as a prominent target whose refolding can be modulated by regulatory factors.
引用
收藏
页码:163 / U4
页数:7
相关论文
共 41 条
  • [1] Direct observation of base-pair stepping by RNA polymerase
    Abbondanzieri, EA
    Greenleaf, WJ
    Shaevitz, JW
    Landick, R
    Block, SM
    [J]. NATURE, 2005, 438 (7067) : 460 - 465
  • [2] Structural basis for transcription regulation by alarmone ppGpp
    Artsimovitch, I
    Patlan, V
    Sekine, SI
    Vassylyeva, MN
    Hosaka, T
    Ochi, K
    Yokoyama, S
    Vassylyev, DG
    [J]. CELL, 2004, 117 (03) : 299 - 310
  • [3] Co-overexpression of Escherichia coli RNA polymerase subunits allows isolation and analysis of mutant enzymes lacking lineage-specific sequence insertions
    Artsimovitch, I
    Svetlov, V
    Murakami, KS
    Landick, R
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (14) : 12344 - 12355
  • [4] A ratchet mechanism of transcription elongation and its control
    Bar-Nahum, G
    Epshtein, V
    Ruckenstein, AE
    Rafikov, R
    Mustaev, A
    Nudler, E
    [J]. CELL, 2005, 120 (02) : 183 - 193
  • [5] Crystallography & NMR system:: A new software suite for macromolecular structure determination
    Brunger, AT
    Adams, PD
    Clore, GM
    DeLano, WL
    Gros, P
    Grosse-Kunstleve, RW
    Jiang, JS
    Kuszewski, J
    Nilges, M
    Pannu, NS
    Read, RJ
    Rice, LM
    Simonson, T
    Warren, GL
    [J]. ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1998, 54 : 905 - 921
  • [6] A UNIVERSALLY CONSERVED REGION OF THE LARGEST SUBUNIT PARTICIPATES IN THE ACTIVE-SITE OF RNA-POLYMERASE-III
    DIECI, G
    HERMANNLEDENMAT, S
    LUKHTANOV, E
    THURIAUX, P
    WERNER, M
    SENTENAC, A
    [J]. EMBO JOURNAL, 1995, 14 (15) : 3766 - 3776
  • [7] Crystal structure of a bacteriophage T7 DNA replication complex at 2.2 Å resolution
    Doublié, S
    Tabor, S
    Long, AM
    Richardson, CC
    Ellenberger, T
    [J]. NATURE, 1998, 391 (6664) : 251 - 258
  • [8] Swing-gate model of nucleotide entry into the RNA polymerase active center
    Epshtein, V
    Mustaev, A
    Markovtsov, V
    Bereshchenko, O
    Nikiforov, V
    Goldfarb, A
    [J]. MOLECULAR CELL, 2002, 10 (03) : 623 - 634
  • [9] Further additions to MolScript version 1.4, including reading and contouring of electron-density maps
    Esnouf, RM
    [J]. ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1999, 55 : 938 - 940
  • [10] Allosteric binding of nucleoside triphosphates to RNA polymerase regulates transcription elongation
    Foster, JE
    Holmes, SF
    Erie, DA
    [J]. CELL, 2001, 106 (02) : 243 - 252