The Bahadur-Kiefer representation of L(p) regression estimators

被引:20
作者
Arcones, MA
机构
关键词
D O I
10.1017/S0266466600006587
中图分类号
F [经济];
学科分类号
02 ;
摘要
We consider the following linear regression model: Y-i = Z(i)'theta(0) + U-i, i = 1,...,n, where X(1) = (Y-1', Z(1)),...,X(n) = (Y-n', Z(n)) are independent and identically distributed random variables, Y-i is real, Z(i) has values in R(m), U-i is independent of Z(i), and theta(0) is and m-dimensional parameter to be estimated. The L(p) estimator of theta(0) is the value theta(n) such that n(-1) (i=1)Sigma(n) \Y-i - Z(i)'theta(n)\(p) = (theta is an element of Rm) inf n(-1) (i=1)Sigma(n) \Y-i - Z(i)'theta\(p). Here, we will give the extract Bahadur-Kiefer representation of theta(n), for each p greater than or equal to 1. Explicitly, we will see that, under regularity conditions, (i) if p > 3/2, (n-->infinity)lim sup (n/log log n)(log n)\H'(theta(0)).(theta(n)-theta(0)) + H-n(theta(0))\ = c a.s., (ii) if p = 3/2, (n-->infinity)lim sup (n/log log n)(log n)(-1/2)\H'(theta(0)).(theta(n)-theta(0)) + H-n(theta(0))\ = c a.s., (iii) if 3/2 > p greater than or equal to 1, (n-->infinity)lim sup (n/log log n)((2p+1)/4)\H'(theta(0)).(theta(nt)heta 0) + H-n(theta(0))\ = c a.s., where h(x,theta) = sign (y - z'theta)\y - z'theta)\y - z'theta\(p-1) z, H(theta) = E[h(X,theta)], H-n(theta) = n(-1)Sigma(i=1)(n) h(X(i), theta) and c is a positive constant, which depends on p and on the random variable X.
引用
收藏
页码:257 / 283
页数:27
相关论文
共 24 条
[1]  
[Anonymous], STAT DEC
[2]   SOME STRONG LIMIT-THEOREMS FOR M-ESTIMATORS [J].
ARCONES, MA .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1994, 53 (02) :241-268
[3]  
ARCONES MA, 1994, NECESSARY SUFFICIENT
[4]  
ARCONES MA, 1994, PROBABILITY BANACH S, V9, P357
[5]  
ARCONES MA, 1994, 2 ORDER REPRESENTATI
[6]   THEORY OF REPRODUCING KERNELS [J].
ARONSZAJN, N .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1950, 68 (MAY) :337-404
[7]   STRONG REPRESENTATIONS FOR LAD ESTIMATORS IN LINEAR-MODELS [J].
BABU, GJ .
PROBABILITY THEORY AND RELATED FIELDS, 1989, 83 (04) :547-558
[8]  
BAI ZD, 1992, STAT SINICA, V2, P237
[9]   ASYMPTOTIC THEORY OF LEAST ABSOLUTE ERROR REGRESSION [J].
BASSETT, G ;
KOENKER, R .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1978, 73 (363) :618-622
[10]  
CHAUDHURI H, 1984, ANN STAT, V19, P760