Interpolation in ortholattices

被引:1
作者
Goldstern, M [1 ]
机构
[1] Vienna Tech Univ, A-1040 Vienna, Austria
基金
奥地利科学基金会;
关键词
Partial Function; Complete Ortholattice;
D O I
10.1007/s000120050202
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
If(L, boolean OR, boolean AND, 0, 1, (perpendicular to)) is a complete ortholattice. f : L-n --> L any partial function, then there is a complete ortholattice L* containing L as a subortholattice, and an ortholattice polynomial p with coefficients in L* such that p(a(1),..., a(n)) = f(a(1),...,a(n)) for all a(1),..., a(n) epsilon L. Iterating this construction long enough yields a complete ortholattice in which every function can be interpolated by a polynomial on any set of small enough cardinality.
引用
收藏
页码:63 / 70
页数:8
相关论文
共 5 条
[1]   FREE ORTHOLATTICES [J].
BRUNS, G .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1976, 28 (05) :977-985
[2]   Interpolation of monotone functions in lattices [J].
Goldstein, M .
ALGEBRA UNIVERSALIS, 1996, 36 (01) :108-121
[3]  
GOLDSTERN M, 1998, CONTRIBUTIONS GEN AL, V10
[4]  
Gratzer G, 1998, General Lattice Theory
[5]  
Kalmbach G, 1983, ORTHOMODULAR LATTICE, V18