CONDENSATION - Conditional density propagation for visual tracking

被引:3513
作者
Isard, M [1 ]
Blake, A [1 ]
机构
[1] Univ Oxford, Dept Engn Sci, Oxford OX1 3PJ, England
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1023/A:1008078328650
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The problem of tracking curves in dense visual clutter is challenging. Kalman filtering is inadequate because it is based on Gaussian densities which, being unimodal, cannot represent simultaneous alternative hypotheses. The CONDENSATION algorithm uses "factored sampling", previously applied to the interpretation of static images, in which the probability distribution of possible interpretations is represented by a randomly generated set. CONDENSATION uses learned dynamical models, together with visual observations, to propagate the random set over time. The result is highly robust tracking of agile motion. Notwithstanding the use of stochastic methods, the algorithm runs in near real-time.
引用
收藏
页码:5 / 28
页数:24
相关论文
共 51 条
  • [1] Anderson, 1979, OPTIMAL FILTERING
  • [2] [Anonymous], 1974, APPL OPTIMAL ESTIMAT
  • [3] [Anonymous], P EUR C COMP VIS
  • [4] [Anonymous], P EUR C COMP VIS
  • [5] Astrom K.J.., 1970, INTRO STOCHASTIC CON
  • [6] Bar-Shalom Y., 1988, Tracking and Data Association
  • [7] BARTELS R. H., 1987, INTRO SPLINES USE CO
  • [8] BAUMBERG A, 1994, P EUR C COMP VIS, P299
  • [9] BAUMBERG A, 1995, P BRIT MACH VIS C, V2, P413
  • [10] LEARNING TO TRACK THE VISUAL-MOTION OF CONTOURS
    BLAKE, A
    ISARD, M
    REYNARD, D
    [J]. ARTIFICIAL INTELLIGENCE, 1995, 78 (1-2) : 179 - 212