Synthesis and analytical properties of micrometric biosensing lipobeads

被引:16
作者
Ma, AH [1 ]
Rosenzweig, Z [1 ]
机构
[1] Univ New Orleans, Dept Chem, New Orleans, LA 70148 USA
基金
美国国家科学基金会;
关键词
fluorescence; miniaturized biosensors; lipobeads;
D O I
10.1007/s00216-005-3186-4
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
This paper describes the preparation for the first time of lipobead-based micrometric fluorescence biosensors and the optimization of their analytical properties. The study focused on the well-established urea biosensors as a model system. Fluorescence-sensing lipobeads were prepared by coating carboxyl-functionalized silica microspheres with phospholipids. The enzyme urease and the pH indicator fluorescein-5-thiosemicarbazide were then attached covalently to the phospholipid membrane of the lipobeads. Urease converts urea to ammonia, which results in a pH increase in the analyte solution and to a urea concentration-dependent increase in the fluorescence intensity of the sensing lipobeads. Previous fluorescence-sensing lipobeads were synthesized by coating polystyrene particles with a phospholipid membrane. The membrane was physically attached to the particles and the fluorophores were entrapped in the membrane. In this study, we prepared improved fluorescence-sensing lipobeads by utilizing covalent chemistry to bind the phospholipid membrane to the silica particles and the fluorophores to the membrane. This led to improvement in the stability of the newly developed urea-sensing lipobeads compared to previously developed miniaturized fluorescence biosensors.
引用
收藏
页码:28 / 36
页数:9
相关论文
共 35 条
[1]   Polypyrrole-based amperometric flow injection biosensor for urea [J].
Adeloju, SB ;
Shaw, SJ ;
Wallace, GG .
ANALYTICA CHIMICA ACTA, 1996, 323 (1-3) :107-113
[2]   POLYPYRROLE-BASED POTENTIOMETRIC BIOSENSOR FOR UREA .1. INCORPORATION OF UREASE [J].
ADELOJU, SB ;
SHAW, SJ ;
WALLACE, GG .
ANALYTICA CHIMICA ACTA, 1993, 281 (03) :611-620
[3]   Fluorescent nanosensors for intracellular chemical analysis: Decyl methacrylate liquid polymer matrix and ion exchange-based potassium PEBBLE sensors with real-time application to viable rat C6 glioma cells [J].
Brasuel, M ;
Kopelman, R ;
Miller, TJ ;
Tjalkens, R ;
Philbert, MA .
ANALYTICAL CHEMISTRY, 2001, 73 (10) :2221-2228
[4]   A note on the kinetics of enzyme action. [J].
Briggs, GE ;
Haldane, JBS .
BIOCHEMICAL JOURNAL, 1925, 19 (02) :338-339
[5]   An amperometric urea biosensor based on a polyaniline-perfluorosulfonated ionomer composite electrode [J].
Cho, WJ ;
Huang, HJ .
ANALYTICAL CHEMISTRY, 1998, 70 (18) :3946-3951
[6]  
Clark MS, 1999, AAPG MEMOIR, V71, P21
[7]   Characterization of a urea optical sensor based on polypyrrole [J].
de Marcos, S ;
Hortigüela, R ;
Galbán, J ;
Castillo, JR ;
Wolfbeis, OS .
MIKROCHIMICA ACTA, 1999, 130 (04) :267-272
[8]   Urea biosensors based on immobilization of urease into two oppositely charged clays (Laponite and Zn-Al layered double hydroxides) [J].
de Melo, JV ;
Cosnier, S ;
Mousty, C ;
Martelet, C ;
Jaffrezic-Renault, N .
ANALYTICAL CHEMISTRY, 2002, 74 (16) :4037-4043
[9]   SINGLE FIBER-OPTIC FLUORESCENCE ENZYME-BASED SENSOR [J].
FUH, MRS ;
BURGESS, LW ;
CHRISTIAN, GD .
ANALYTICAL CHEMISTRY, 1988, 60 (05) :433-435
[10]   Mesoporous silicate sequestration and release of proteins [J].
Han, YJ ;
Stucky, GD ;
Butler, A .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1999, 121 (42) :9897-9898