Meissner effect in honeycomb arrays of multiwalled carbon nanotubes

被引:18
作者
Murata, N. [1 ,4 ]
Haruyama, J. [1 ,4 ]
Ueda, Y. [1 ]
Matsudaira, M. [1 ]
Karino, H. [1 ]
Yagi, Y. [4 ]
Einarsson, E. [2 ]
Chiashi, S. [2 ]
Maruyama, S. [2 ]
Sugai, T. [3 ,4 ]
Kishi, N. [3 ]
Shinohara, H. [3 ,4 ]
机构
[1] Aoyama Gakuin Univ, Kanagawa 2298558, Japan
[2] Univ Tokyo, Bunkyo Ku, Tokyo 1130033, Japan
[3] Nagoya Univ, Nagoya, Aichi 4648602, Japan
[4] JST CREST, Kawaguchi, Saitama 3320012, Japan
来源
PHYSICAL REVIEW B | 2007年 / 76卷 / 24期
关键词
D O I
10.1103/PhysRevB.76.245424
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We report a gradual magnetization drop with an onset temperature (T(c)) of 18-23 K found in the honeycomb arrays of multiwalled CNTs (MWNTs) showing a slight resistance decrease due to superconductivity. Magnetic field dependence of the drop and temperature dependence of critical fields indicate that it is attributed to Meissner effect for type-II superconductors. The T(c) value is the highest among those in new carbon-related superconductors. The weak magnetic anisotropy, superconductive coherence length (11-19 nm), and disappearance of the Meissner effect after destructing array structure suggest that intertube coupling of MWNTs in the honeycomb array is a dominant factor for the mechanism. Drastic reduction of ferromagnetic catalyst for synthesis of the MWNTs makes the finding possible.
引用
收藏
页数:6
相关论文
共 24 条
[1]   Magnetic properties of nested carbon nanostructures studied by electron spin resonance and magnetic susceptibility measurements [J].
Bandow, S .
JOURNAL OF APPLIED PHYSICS, 1996, 80 (02) :1020-1027
[2]   Variable-range hopping conduction in the assembly of boron-doped multiwalled carbon nanotubes [J].
Bandow, Shunji ;
Numao, Shigenori ;
Iijima, Sumio .
JOURNAL OF PHYSICAL CHEMISTRY C, 2007, 111 (32) :11763-11766
[3]   Electron-phonon interaction in ultrasmall-radius carbon nanotubes [J].
Barnett, R ;
Demler, E ;
Kaxiras, E .
PHYSICAL REVIEW B, 2005, 71 (03)
[4]   Superconductivity in doped cubic silicon [J].
Bustarret, E. ;
Marcenat, C. ;
Achatz, P. ;
Kacmarcik, J. ;
Levy, F. ;
Huxley, A. ;
Ortega, L. ;
Bourgeois, E. ;
Blase, X. ;
Debarre, D. ;
Boulmer, J. .
NATURE, 2006, 444 (7118) :465-468
[5]   Indication of superconductivity at 35 K in graphite-sulfur composites [J].
da Silva, RR ;
Torres, JHS ;
Kopelevich, Y .
PHYSICAL REVIEW LETTERS, 2001, 87 (14) :147001/1-147001/4
[6]   Superconductivity in diamond [J].
Ekimov, EA ;
Sidorov, VA ;
Bauer, ED ;
Mel'nik, NN ;
Curro, NJ ;
Thompson, JD ;
Stishov, SM .
NATURE, 2004, 428 (6982) :542-545
[7]   Superconductivity of bulk CaC6 -: art. no. 087003 [J].
Emery, N ;
Hérold, C ;
d'Astuto, M ;
Garcia, V ;
Bellin, C ;
Marêché, JF ;
Lagrange, P ;
Loupias, G .
PHYSICAL REVIEW LETTERS, 2005, 95 (08)
[8]   Superconducting diamagnetic fluctuations in ropes of carbon nanotubes [J].
Ferrier, M ;
Ladieu, F ;
Ocio, M ;
Sacépé, B ;
Vaugien, T ;
Pichot, V ;
Launois, P ;
Bouchiat, H .
PHYSICAL REVIEW B, 2006, 73 (09)
[9]   Microscopic model of superconductivity in carbon nanotubes -: art. no. 076403 [J].
González, J .
PHYSICAL REVIEW LETTERS, 2002, 88 (07) :4
[10]   Consistency of superconducting correlations with one-dimensional electron interactions in carbon nanotubes -: art. no. 136401 [J].
González, J .
PHYSICAL REVIEW LETTERS, 2001, 87 (13) :1-136401