Phylogeny of the bacterial superfamily of Crp-Fnr transcription regulators:: exploiting the metabolic spectrum by controlling alternative gene programs

被引:349
作者
Körner, H
Sofia, HJ
Zumft, WG
机构
[1] Univ Karlsruhe, Lehrstuhl Mikrobiol, D-76128 Karlsruhe, Germany
[2] Pacific NW Natl Lab, Richland, WA 99352 USA
关键词
phylogeny; superfamily; regulation of transcription; cyclic adenosine monophosphate; helix-turn-helix; bioinformatics;
D O I
10.1016/S0168-6445(03)00066-4
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
The Crp-Fnr regulators, named after the first two identified members, are DNA-binding proteins which predominantly function as positive transcription factors, though roles of repressors are also important. Among over 1200 proteins with an N-terminally located nucleotide-binding domain similar to the cyclic adenosine monophosphate (cAMP) receptor protein, the distinctive additional trait of the Crp-Fnr superfamily is a C-terminally located helix-turn-helix motif for DNA binding. From a curated database of 369 family members exhibiting both features, we provide a protein tree of Crp-Fnr proteins according to their phylogenetic relationships. This results in the assembly of the regulators ArcR, CooA, CprK, Crp, Dnr, FixK, Flp, Fnr, FnrN, MalR, NnrR, NtcA, PrfA, and YeiL and their homologs in distinct clusters. Lead members and representatives of these groups are described, placing emphasis on the less well-known regulators and target processes. Several more groups consist of sequence-derived proteins of unknown physiological roles; some of them are tight clusters of highly similar members. The Crp-Fnr regulators stand out in responding to a broad spectrum of intracellular and exogenous signals such as cAMP, anoxia, the redox state, oxidative and nitrosative stress, nitric oxide, carbon monoxide, 2-oxoglutarate, or temperature. To accomplish their roles, Crp-Fnr members have intrinsic sensory modules allowing the binding of allosteric effector molecules, or have prosthetic groups for the interaction with the signal. The regulatory adaptability and structural flexibility represented in the Crp-Fnr scaffold has led to the evolution of an important group of physiologically versatile transcription factors. (C) 2003 Federation of European Microbiological Societies. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:559 / 592
页数:34
相关论文
共 197 条
[1]   Vfr controls quorum sensing in Pseudomonas aeruginosa [J].
Albus, AM ;
Pesci, EC ;
RunyenJanecky, LJ ;
West, SEH ;
Iglewski, BH .
JOURNAL OF BACTERIOLOGY, 1997, 179 (12) :3928-3935
[2]   Gapped BLAST and PSI-BLAST: a new generation of protein database search programs [J].
Altschul, SF ;
Madden, TL ;
Schaffer, AA ;
Zhang, JH ;
Zhang, Z ;
Miller, W ;
Lipman, DJ .
NUCLEIC ACIDS RESEARCH, 1997, 25 (17) :3389-3402
[3]   YeiL, the third member of the CRP-FNR family in Escherichia coli [J].
Anjum, MF ;
Green, J ;
Guest, JR .
MICROBIOLOGY-SGM, 2000, 146 :3157-3170
[4]  
[Anonymous], 2 COMPONENT SIGNAL T
[5]   CHARACTERIZATION OF A FIXLJ-REGULATED BRADYRHIZOBIUM-JAPONICUM GENE SHARING SIMILARITY WITH THE ESCHERICHIA-COLI FNR AND RHIZOBIUM-MELILOTI FIXK GENES [J].
ANTHAMATTEN, D ;
SCHERB, B ;
HENNECKE, H .
JOURNAL OF BACTERIOLOGY, 1992, 174 (07) :2111-2120
[6]   A novel heme protein that acts as a carbon monoxide-dependent transcriptional activator in Rhodospirillum rubrum [J].
Aono, S ;
Nakajima, H ;
Saito, K ;
Okada, M .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1996, 228 (03) :752-756
[7]   EXPRESSION OF THE NIR AND NOR GENES FOR DENITRIFICATION OF PSEUDOMONAS-AERUGINOSA REQUIRES A NOVEL CRP/FNR-RELATED TRANSCRIPTIONAL REGULATOR, DNR, IN ADDITION TO ANR [J].
ARAI, H ;
IGARASHI, Y ;
KODAMA, T .
FEBS LETTERS, 1995, 371 (01) :73-76
[8]   Effect of nitrogen oxides on expression of the nir and nor genes for denitrification in Pseudomonas aeruginosa [J].
Arai, H ;
Kodama, T ;
Igarashi, Y .
FEMS MICROBIOLOGY LETTERS, 1999, 170 (01) :19-24
[9]   Cascade regulation of the two CBP/FNR-related transcriptional regulators (ANR and DNR) and the denitrification enzymes in Pseudomonas aeruginosa [J].
Arai, H ;
Kodama, T ;
Igarashi, Y .
MOLECULAR MICROBIOLOGY, 1997, 25 (06) :1141-1148
[10]   PII signal transduction proteins, pivotal players in microbial nitrogen control [J].
Arcondéguy, T ;
Jack, R ;
Merrick, M .
MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS, 2001, 65 (01) :80-+