Short-term controls on the age of microbial carbon sources in boreal forest soils

被引:23
作者
Czimczik, Claudia I. [1 ]
Trumbore, Susan E. [1 ]
机构
[1] Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA 92697 USA
关键词
D O I
10.1029/2006JG000389
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
[1] One predicted positive feedback of increasing temperatures in the boreal region is carbon (C) loss through enhanced microbial decomposition of soil organic matter (SOM). The degree to which temperature sensitivity for decomposition varies across a range of C-substrates remains uncertain. Using incubations, we tested whether microorganisms shift to more recalcitrant substrates (with longer turnover times) at higher temperatures at low or increased soil moisture. We measured the radiocarbon (Delta C-14) and stable isotope (delta C-13) signature of CO2 respired from organic soils from six black spruce forests (0 to 150 years since fire). We identified major C substrates contributing to decomposition by comparing Delta C-14 of CO2 to Delta C-14 of roots, mosses, needles, and wood separated from bulk SOM. The Delta C-14 signatures of these components allow an estimation of their turnover times, further constraining their relative contribution to respiration. Fastest turnover rates were observed for herbaceous litter and needles ( annual to < decadal), the longest (> decadal) for mosses, with intermediate turnover times for roots. Dominant microbial C sources in 5 to 40 year old stands were fire remnants and litter of early succession species, while substrates with longer turnover times accounted for a larger proportion of CO2 in mature stands. At both low and increased moisture levels, the increase in CO2 efflux at higher temperatures was accompanied by a decline in delta(CO2)-C-13, but no shift in Delta(CO2)-C-14. This suggests that temperature sensitivity is not greater for recalcitrant C and that changes in delta C-13 likely reflect temperature dependence of microbial fractionation processes rather than a substrate shift.
引用
收藏
页数:8
相关论文
共 38 条
[1]   Chemical composition and bioavailability of thermally, altered Pinus resinosa (Red Pine) wood [J].
Baldock, JA ;
Smernik, RJ .
ORGANIC GEOCHEMISTRY, 2002, 33 (09) :1093-1109
[2]   Temperature-dependent shift from labile to recalcitrant carbon sources of arctic heterotrophs [J].
Biasi, C ;
Rusalimova, O ;
Meyer, H ;
Kaiser, C ;
Wanek, W ;
Barsukov, P ;
Junger, H ;
Richter, A .
RAPID COMMUNICATIONS IN MASS SPECTROMETRY, 2005, 19 (11) :1401-1408
[3]   Recalcitrant soil organic materials mineralize more efficiently at higher temperatures [J].
Bol, R ;
Bolger, T ;
Cully, R ;
Little, D .
JOURNAL OF PLANT NUTRITION AND SOIL SCIENCE, 2003, 166 (03) :300-307
[4]   Partitioning sources of soil-respired CO2 and their seasonal variation using a unique radiocarbon tracer [J].
Cisneros-Dozal, LM ;
Trumbore, S ;
Hanson, PJ .
GLOBAL CHANGE BIOLOGY, 2006, 12 (02) :194-204
[5]   Effect of moisture on leaf litter decomposition and its contribution to soil respiration in a temperate forest [J].
Cisneros-Dozal, Luz Maria ;
Trumbore, Susan E. ;
Hanson, Paul J. .
JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES, 2007, 112 (G1)
[6]  
CZIMCZIK CI, 2006, GLOBAL CHANGE BIOL, V12, P1, DOI DOI 10.1111/J91365-2486.2006.01107.X
[7]   Temperature sensitivity of soil carbon decomposition and feedbacks to climate change [J].
Davidson, EA ;
Janssens, IA .
NATURE, 2006, 440 (7081) :165-173
[8]   Biogeochemistry - Soil warming and organic carbon content [J].
Davidson, EA ;
Trumbore, SE ;
Amundson, R .
NATURE, 2000, 408 (6814) :789-790
[9]   GAS DIFFUSIVITY AND PRODUCTION OF CO2 IN DEEP SOILS OF THE EASTERN AMAZON [J].
DAVIDSON, EA ;
TRUMBORE, SE .
TELLUS SERIES B-CHEMICAL AND PHYSICAL METEOROLOGY, 1995, 47 (05) :550-565
[10]   ADSORPTION OF NATURAL DISSOLVED ORGANIC-MATTER AT THE OXIDE WATER INTERFACE [J].
DAVIS, JA .
GEOCHIMICA ET COSMOCHIMICA ACTA, 1982, 46 (11) :2381-2393