Simple proof of equivalence between adiabatic quantum computation and the circuit model

被引:169
作者
Mizel, Ari [1 ]
Lidar, Daniel A.
Mitchell, Morgan
机构
[1] Penn State Univ, Dept Phys, University Pk, PA 16802 USA
[2] Univ So Calif, Dept Chem, Los Angeles, CA 90089 USA
[3] Univ So Calif, Dept Elect Engn & Phys, Los Angeles, CA 90089 USA
[4] ICFO, Barcelona 08860, Spain
关键词
D O I
10.1103/PhysRevLett.99.070502
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We prove the equivalence between adiabatic quantum computation and quantum computation in the circuit model. An explicit adiabatic computation procedure is given that generates a ground state from which the answer can be extracted. The amount of time needed is evaluated by computing the gap. We show that the procedure is computationally efficient.
引用
收藏
页数:4
相关论文
共 23 条
[1]  
AHARONOV D, QUANTPH0405098
[2]   Internal consistency of fault-tolerant quantum error correction in light of rigorous derivations of the quantum Markovian limit [J].
Alicki, Robert ;
Lidar, Daniel A. ;
Zanardi, Paolo .
PHYSICAL REVIEW A, 2006, 73 (05)
[3]  
DEIFT P, QUANTPH0605156
[4]   QUANTUM COMPUTATIONAL NETWORKS [J].
DEUTSCH, D .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1989, 425 (1868) :73-90
[5]  
DiVincenzo DP, 2000, FORTSCHR PHYS, V48, P771, DOI 10.1002/1521-3978(200009)48:9/11<771::AID-PROP771>3.0.CO
[6]  
2-E
[7]  
FARHI E, QUANTPH0001106
[8]  
Fowler AG, 2004, QUANTUM INF COMPUT, V4, P237
[9]  
JANSEN S, QUANTUPH0603175, P24908
[10]   The complexity of the local Hamiltonian problem [J].
Kempe, J ;
Kitaev, A ;
Regev, O .
SIAM JOURNAL ON COMPUTING, 2006, 35 (05) :1070-1097