HIF-2α specifically activates the VE-cadherin promoter independently of hypoxia and in synergy with Ets-1 through two essential ETS-binding sites

被引:67
作者
Le Bras, A.
Lionneton, F.
Mattot, V.
Lelievre, E.
Caetano, B.
Spruyt, N.
Soncin, F.
机构
[1] CNRS, UMR 8161, Lille, France
[2] Univ Lille 1, Lille, France
[3] Univ Lille 2, Lille, France
[4] Inst Pasteur, Lille, France
关键词
angiogenesis; endothelium; gene transcription;
D O I
10.1038/sj.onc.1210566
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The mechanisms that are responsible for the restricted pattern of express ion of the VE-cadherin gene in endothelial cells are not clearly understood. Regulation of express ion is under the control of an approximately 140 bp proximal promoter that provides basal, non-endothelial specific expression. A larger region contained within the 2.5 kb genomic DNA sequence located ahead of the transcription start is involved in the specific expression of the gene in endothelial cells. We show here that the VE-cadherin promoter contains several putative hypoxia response elements (HRE) which are able to bind endothelial nuclear factors under normoxia. The VE-cadherin gene is not responsive to hypoxia but hypoxia-inducible factor (HIF)-2 alpha specifically activates the promoter while HIF-1 alpha does not. The HRE, that are involved in this activity have been identified. Further, we show that HIF2 alpha cooperates with the Ets-1 transcription factor for activation of the VE-cadherin promoter and that this synergy is dependent on the binding of Ets-1 to DNA. This cooperative action of HIF-2 a with Ets-1 most probably participates to the transcriptional regulation of express ion of the gene in endothelial cells. This mechanism may also be involved in the expression of the VE-cadherin gene by tumor cells in the process of vascular mimicry.
引用
收藏
页码:7480 / 7489
页数:10
相关论文
共 62 条
[1]   OS-9 interacts with hypoxia-inducible factor 1α and prolyl hydroxylases to promote oxygen-dependent degradation of HIF-1α [J].
Baek, JH ;
Mahon, PC ;
Oh, J ;
Kelly, B ;
Krishnamachary, B ;
Pearson, M ;
Chan, DA ;
Giaccia, AJ ;
Semenza, GL .
MOLECULAR CELL, 2005, 17 (04) :503-512
[2]   Signalling via the hypoxia-inducible factor-1α requires multiple posttranslational mofications [J].
Brahimi-Horn, C ;
Mazure, N ;
Pouysségur, J .
CELLULAR SIGNALLING, 2005, 17 (01) :1-9
[3]   Molecular cloning and expression of murine vascular endothelial cadherin in early stage development of cardiovascular system [J].
Breier, G ;
Breviario, F ;
Caveda, L ;
Berthier, R ;
Schnurch, H ;
Gotsch, U ;
Vestweber, D ;
Risau, W ;
Dejana, E .
BLOOD, 1996, 87 (02) :630-641
[4]   A conserved family of prolyl-4-hydroxylases that modify HIF [J].
Bruick, RK ;
McKnight, SL .
SCIENCE, 2001, 294 (5545) :1337-1340
[5]   Targeted deficiency or cytosolic truncation of the VE-cadherin gene in mice impairs VEGF-mediated endothelial survival and angiogenesis [J].
Carmeliet, P ;
Lampugnani, MG ;
Moons, L ;
Breviario, F ;
Compernolle, V ;
Bono, F ;
Balconi, G ;
Spagnuolo, R ;
Oosthuyse, B ;
Dewerchin, M ;
Zanetti, A ;
Angellilo, A ;
Mattot, V ;
Nuyens, D ;
Lutgens, E ;
Clotman, F ;
de Ruiter, MC ;
Gittenberger-de Groot, A ;
Poelmann, R ;
Lupu, F ;
Herbert, JM ;
Collen, D ;
Dejana, E .
CELL, 1999, 98 (02) :147-157
[6]   Inhibition of cultured cell growth by vascular endothelial cadherin (Cadherin-5 VE-cadherin) [J].
Caveda, L ;
MartinPadura, L ;
Navarro, P ;
Breviario, F ;
Corada, M ;
Gulino, D ;
Lampugnani, MG ;
Dejana, E .
JOURNAL OF CLINICAL INVESTIGATION, 1996, 98 (04) :886-893
[7]   Vascular endothelial-cadherin is an important determinant of microvascular integrity in vivo [J].
Corada, M ;
Mariotti, M ;
Thurston, G ;
Smith, K ;
Kunkel, R ;
Brockhaus, M ;
Lampugnani, MG ;
Martin-Padura, I ;
Stoppacciaro, A ;
Ruco, L ;
McDonald, DM ;
Ward, PA ;
Dejana, E .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (17) :9815-9820
[8]   Identification of hypoxia-response element in the human endothelial nitric-oxide synthase gene promoter [J].
Coulet, F ;
Nadaud, S ;
Agrapart, M ;
Soubrier, F .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (47) :46230-46240
[9]   HIF-2α regulates Oct-4:: effects of hypoxia on stem cell function, embryonic development, and tumor growth [J].
Covello, KL ;
Kehler, J ;
Yu, HW ;
Gordan, JD ;
Arsham, AM ;
Hu, CJ ;
Labosky, PA ;
Simon, MC ;
Keith, B .
GENES & DEVELOPMENT, 2006, 20 (05) :557-570
[10]   Targeted replacement of hypoxia-inducible factor-1α by a hypoxia-inducible factor-2α knock-in allele promotes tumor growth [J].
Covello, KL ;
Simon, MC ;
Keith, B .
CANCER RESEARCH, 2005, 65 (06) :2277-2286