Statistical methods for detecting differentially methylated loci and regions

被引:77
作者
Robinson, Mark D. [1 ,2 ]
Kahraman, Abdullah [1 ,2 ]
Law, Charity W. [1 ,2 ]
Lindsay, Helen [1 ,2 ]
Nowicka, Malgorzata [1 ,2 ]
Weber, Lukas M. [1 ,2 ]
Zhou, Xiaobei [1 ,2 ]
机构
[1] Univ Zurich, Inst Mol Life Sci, CH-8057 Zurich, Switzerland
[2] Univ Zurich, SIB Swiss Inst Bioinformat, Zurich, Switzerland
来源
FRONTIERS IN GENETICS | 2014年 / 5卷
关键词
WIDE DNA METHYLATION; BISULFITE SEQUENCING DATA; EMBRYONIC STEM-CELLS; BREAST-CANCER; R PACKAGE; GENOME; NORMALIZATION; RESOLUTION; METHYLOME; 5-HYDROXYMETHYLCYTOSINE;
D O I
10.3389/fgene.2014.00324
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
DNA methylation, the reversible addition of methyl groups at CpG dinucleotides, represents an important regulatory layer associated with gene expression. Changed methylation status has been noted across diverse pathological states, including cancer. The rapid development and uptake of microarrays and large scale DNA sequencing has prompted an explosion of data analytic methods for processing and discovering changes in DNA methylation across varied data types. In this mini-review, we present a compact and accessible discussion of many of the salient challenges, such as experimental design, statistical methods for differential methylation detection, critical considerations such as cell type composition and the potential confounding that can arise from batch effects. From a statistical perspective, our main interests include the use of empirical Bayes or hierarchical models, which have proved immensely powerful in genomics, and the procedures by which false discovery control is achieved.
引用
收藏
页数:7
相关论文
共 66 条
[1]  
Akalin A, 2012, GENOME BIOL, V13, DOI [10.1186/gb-2012-13-10-R87, 10.1186/gb-2012-13-10-r87]
[2]   Minfi: a flexible and comprehensive Bioconductor package for the analysis of Infinium DNA methylation microarrays [J].
Aryee, Martin J. ;
Jaffe, Andrew E. ;
Corrada-Bravo, Hector ;
Ladd-Acosta, Christine ;
Feinberg, Andrew P. ;
Hansen, Kasper D. ;
Irizarry, Rafael A. .
BIOINFORMATICS, 2014, 30 (10) :1363-1369
[3]  
Bae Jae-Bum, 2013, Genomics & Informatics, V11, P7
[4]   False discovery rates for spatial signals [J].
Benjamini, Ybav ;
Heller, Ruth .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2007, 102 (480) :1272-1281
[5]   An operational definition of epigenetics [J].
Berger, Shelley L. ;
Kouzarides, Tony ;
Shiekhattar, Ramin ;
Shilatifard, Ali .
GENES & DEVELOPMENT, 2009, 23 (07) :781-783
[6]   The NIH Roadmap Epigenomics Mapping Consortium [J].
Bernstein, Bradley E. ;
Stamatoyannopoulos, John A. ;
Costello, Joseph F. ;
Ren, Bing ;
Milosavljevic, Aleksandar ;
Meissner, Alexander ;
Kellis, Manolis ;
Marra, Marco A. ;
Beaudet, Arthur L. ;
Ecker, Joseph R. ;
Farnham, Peggy J. ;
Hirst, Martin ;
Lander, Eric S. ;
Mikkelsen, Tarjei S. ;
Thomson, James A. .
NATURE BIOTECHNOLOGY, 2010, 28 (10) :1045-1048
[7]   DNA methylation patterns and epigenetic memory [J].
Bird, A .
GENES & DEVELOPMENT, 2002, 16 (01) :6-21
[8]   Analysing and interpreting DNA methylation data [J].
Bock, Christoph .
NATURE REVIEWS GENETICS, 2012, 13 (10) :705-719
[9]   Genome-wide DNA Methylation Events in TMPRSS2-ERG Fusion-Negative Prostate Cancers Implicate an EZH2-Dependent Mechanism with miR-26a Hypermethylation [J].
Boerno, Stefan T. ;
Fischer, Axel ;
Kerick, Martin ;
Faelth, Maria ;
Laible, Mark ;
Brase, Jan C. ;
Kuner, Ruprecht ;
Dahl, Andreas ;
Grimm, Christina ;
Sayanjali, Behnam ;
Isau, Melanie ;
Roehr, Christina ;
Wunderlich, Andrea ;
Timmermann, Bernd ;
Claus, Rainer ;
Plass, Christoph ;
Graefen, Markus ;
Simon, Ronald ;
Demichelis, Francesca ;
Rubin, Mark A. ;
Sauter, Guido ;
Schlomm, Thorsten ;
Sueltmann, Holger ;
Lehrach, Hans ;
Schweiger, Michal R. .
CANCER DISCOVERY, 2012, 2 (11) :1024-1035
[10]   Quantitative Sequencing of 5-Methylcytosine and 5-Hydroxymethylcytosine at Single-Base Resolution [J].
Booth, Michael J. ;
Branco, Miguel R. ;
Ficz, Gabriella ;
Oxley, David ;
Krueger, Felix ;
Reik, Wolf ;
Balasubramanian, Shankar .
SCIENCE, 2012, 336 (6083) :934-937