A discrete kinetic approximation of entropy solutions to multidimensional scalar conservation laws

被引:92
作者
Natalini, R [1 ]
机构
[1] CNR, Ist Applicaz Calcolo M Picone, I-00161 Rome, Italy
关键词
D O I
10.1006/jdeq.1998.3460
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present a new relaxation approximation to scalar conservation laws in several space variables by means of semilinear hyperbolic systems of equations with a finite number of velocities. Under a suitable multidimensional generalization of the Whitham relaxation subcharacteristic condition, we show the convergence of the approximated solutions to the unique entropy solution of the equilibrium Cauchy problem. (C) 1998 Academic Press.
引用
收藏
页码:292 / 317
页数:26
相关论文
共 46 条
[1]  
[Anonymous], 1996, DIFFER INTEGRAL EQU, DOI DOI 10.57262/DIE/1367846901
[2]  
[Anonymous], 1970, MATH USSR SB
[3]  
Aregba-Driollet D., 1996, APPL ANAL, V61, P163
[4]  
AREGBADRIOLLET D, 1997, 22 IAC
[5]   A kinetic formulation for multi-branch entropy solutions of scalar conservation laws [J].
Brenier, Y ;
Corrias, L .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1998, 15 (02) :169-190
[7]  
BRENIER Y, 1992, PUBL LAB ANAL NUMERI
[8]  
CARFLISCH R, 1979, COMMUN PUR APPL MATH, V32, P589
[9]  
Cercignani C, 1988, BOLTZMANN EQUATION I
[10]  
Cercignani C, 1994, MATH THEORY DILUTE G