Metabolic status rather than cell cycle signals control quiescence entry and exit

被引:105
作者
Laporte, Damien [1 ,2 ]
Lebaudy, Anne [1 ,2 ]
Sahin, Annelise [1 ,2 ]
Pinson, Benoit [1 ,2 ]
Ceschin, Johanna [1 ,2 ]
Daignan-Fornier, Bertrand [1 ,2 ]
Sagot, Isabelle [1 ,2 ]
机构
[1] Univ Bordeaux, F-33000 Bordeaux, France
[2] Ctr Natl Rech Sci, Inst Biochim & Genet Cellulaires, UMR 5095, F-33000 Bordeaux, France
关键词
YEAST SACCHAROMYCES-CEREVISIAE; STATIONARY-PHASE CULTURES; NONQUIESCENT CELLS; RESTRICTION POINT; PROTEIN-SYNTHESIS; STRESS TOLERANCE; GENE-EXPRESSION; FISSION YEAST; DIVISION; GROWTH;
D O I
10.1083/jcb.201009028
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Quiescence is defined as a temporary arrest of proliferation, yet it likely encompasses various cellular situations. Our knowledge about this widespread cellular state remains limited. In particular, little is known about the molecular determinants that orchestrate quiescence establishment and exit. Here we show that upon carbon source exhaustion, budding yeast can enter quiescence from all cell cycle phases. Moreover, using cellular structures that are candidate markers for quiescence, we found that the first steps of quiescence exit can be triggered independently of cell growth and proliferation by the sole addition of glucose in both Saccharomyces cerevisiae and Schizosaccharomyces pombe. Importantly, glucose needs to be internalized and catabolized all the way down to glycolysis to mobilize quiescent cell specific structures, but, strikingly, ATP replenishment is apparently not the key signal. Altogether, these findings strongly suggest that quiescence entry and exit primarily rely on cellular metabolic status and can be uncoupled from the cell cycle.
引用
收藏
页码:949 / 957
页数:9
相关论文
共 39 条
[1]   Isolation of quiescent and nonquiescent cells from yeast stationary-phase cultures [J].
Allen, Chris ;
Buettner, Sabrina ;
Aragon, Anthony D. ;
Thomas, Jason A. ;
Meirelles, Osorio ;
Jaetao, Jason E. ;
Benn, Don ;
Ruby, Stephanie W. ;
Veenhuis, Marten ;
Madeo, Frank ;
Werner-Washburne, Margaret .
JOURNAL OF CELL BIOLOGY, 2006, 174 (01) :89-100
[2]   Characterization of differentiated quiescent and nonquiescent cells in yeast stationary-phase cultures [J].
Aragon, Anthony D. ;
Rodriguez, Angelina L. ;
Meirelles, Osorio ;
Roy, Sushmita ;
Davidson, George S. ;
Tapia, Phillip H. ;
Allen, Chris ;
Joe, Ray ;
Benn, Don ;
Werner-Washburne, Margaret .
MOLECULAR BIOLOGY OF THE CELL, 2008, 19 (03) :1271-1280
[3]   PROTEIN-SYNTHESIS REQUIREMENTS FOR NUCLEAR DIVISION, CYTOKINESIS, AND CELL-SEPARATION IN SACCHAROMYCES-CEREVISIAE [J].
BURKE, DJ ;
CHURCH, D .
MOLECULAR AND CELLULAR BIOLOGY, 1991, 11 (07) :3691-3698
[4]   A new description of cellular quiescence [J].
Coller, HA ;
Sang, LY ;
Roberts, JM .
PLOS BIOLOGY, 2006, 4 (03) :329-349
[5]   Reappraisal of serum starvation, the restriction point, G0, and G1 phase arrest points [J].
Cooper, S .
FASEB JOURNAL, 2003, 17 (03) :333-340
[6]   CDK activity antagonizes Whi5, an inhibitor of G1/S transcription in yeast [J].
Costanzo, M ;
Nishikawa, JL ;
Tang, XL ;
Millman, JS ;
Schub, O ;
Breitkreuz, K ;
Dewar, D ;
Rupes, I ;
Andrews, B ;
Tyers, M .
CELL, 2004, 117 (07) :899-913
[7]   FISSION YEAST ENTERS THE STATIONARY PHASE G0 STATE FROM EITHER MITOTIC G1 OR G2 [J].
COSTELLO, G ;
RODGERS, L ;
BEACH, D .
CURRENT GENETICS, 1986, 11 (02) :119-125
[8]   CARBON SOURCE INDUCES GROWTH OF STATIONARY PHASE YEAST-CELLS, INDEPENDENT OF CARBON SOURCE METABOLISM [J].
GRANOT, D ;
SNYDER, M .
YEAST, 1993, 9 (05) :465-479
[9]   GLUCOSE INDUCES CAMP-INDEPENDENT GROWTH-RELATED CHANGES IN STATIONARY-PHASE CELLS OF SACCHAROMYCES-CEREVISIAE [J].
GRANOT, D ;
SNYDER, M .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1991, 88 (13) :5724-5728
[10]   Sleeping beauty:: Quiescence in Saccharomyces cerevisiae [J].
Gray, JV ;
Petsko, GA ;
Johnston, GC ;
Ringe, D ;
Singer, RA ;
Werner-Washburne, M .
MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS, 2004, 68 (02) :187-+