Mean-field theoretical analysis of brush-coated nanoparticle dispersion in polymer matrices

被引:111
作者
Harton, Shane E. [1 ]
Kumar, Sanat K. [1 ]
机构
[1] Columbia Univ, Dept Chem Engn, New York, NY 10027 USA
关键词
nanocomposites; theory; thermodynamics;
D O I
10.1002/polb.21346
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
The equilibrium dispersion of nanoparticles with grafted polymer chains into polymer matrices, of the same chemical structure as the brush, is studied through the device of mean-field theory. Our results show that the disperion of brush-coated nanoparticles into a matrix polymer is improved with (i) decreasing particle radius and (ii) increasing brush chain length. Both of these aspects can be understood based on the fact that, unlike the case of planar surfaces, homopolymer chains end-grafted to spherical nanoparticle surfaces tangentially spread away from the surface thus alleviating the packing frustration that is created by the relatively high grafting densities. This permits significant brush/matrix overlap, even at high grafting densities, a regime that has only recently become experimentally available due to advances in polymer synthesis (i.e., the "grafting-to" methods). (c) 2008 Wiley Periodicals, Inc.
引用
收藏
页码:351 / 358
页数:8
相关论文
共 50 条
[1]   END-TETHERED CHAINS IN POLYMERIC MATRICES [J].
AUBOUY, M ;
FREDRICKSON, GH ;
PINCUS, P ;
RAPHAEL, E .
MACROMOLECULES, 1995, 28 (08) :2979-2981
[2]   Controlling the thermornechanical properties of polymer nanocomposites by tailoring the polymer-particle interface [J].
Bansal, Amitabh ;
Yang, Hoichang ;
Li, Chunzhao ;
Benicewicz, Rian C. ;
Kumar, Sanat K. ;
Schadler, Linda S. .
JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS, 2006, 44 (20) :2944-2950
[3]   Synthesis of molecular brushes with gradient in grafting density by atom transfer polymerization [J].
Börner, HG ;
Duran, D ;
Matyjaszewski, K ;
da Silva, M ;
Sheiko, SS .
MACROMOLECULES, 2002, 35 (09) :3387-3394
[4]   Enthalpic stabilization of brush-coated particles in a polymer melt [J].
Borukhov, I ;
Leibler, L .
MACROMOLECULES, 2002, 35 (13) :5171-5182
[5]   MOLECULAR-WEIGHT AND POLYDISPERSITY EFFECTS AT POLYMER POLYMER INTERFACES [J].
BROSETA, D ;
FREDRICKSON, GH ;
HELFAND, E ;
LEIBLER, L .
MACROMOLECULES, 1990, 23 (01) :132-139
[6]   INTERACTION ENERGIES FOR BLENDS OF POLY(METHYL METHACRYLATE), POLYSTYRENE, AND POLY(ALPHA-METHYLSTYRENE) BY THE CRITICAL MOLECULAR-WEIGHT METHOD [J].
CALLAGHAN, TA ;
PAUL, DR .
MACROMOLECULES, 1993, 26 (10) :2439-2450
[7]   STRUCTURAL AND THERMODYNAMIC PROPERTIES OF END-GRAFTED POLYMERS ON CURVED SURFACES [J].
CARIGNANO, MA ;
SZLEIFER, I .
JOURNAL OF CHEMICAL PHYSICS, 1995, 102 (21) :8662-8669
[8]   POLYMERS TETHERED TO CURVED INTERFACES - A SELF-CONSISTENT-FIELD ANALYSIS [J].
DAN, N ;
TIRRELL, M .
MACROMOLECULES, 1992, 25 (11) :2890-2895
[9]   CONFORMATIONS OF POLYMERS ATTACHED TO AN INTERFACE [J].
DEGENNES, PG .
MACROMOLECULES, 1980, 13 (05) :1069-1075
[10]   ADSORPTION OF A CHAIN POLYMER BETWEEN 2 PLATES [J].
DIMARZIO, EA ;
RUBIN, RJ .
JOURNAL OF CHEMICAL PHYSICS, 1971, 55 (09) :4318-&