Microstructure and electrochemical performance of LiNi0.6C0.4-xMnO2cathode materials

被引:65
作者
Liao, PY
Duh, JG [1 ]
Sheen, SR
机构
[1] Natl Tsing Hua Univ, Dept Mat Sci & Engn, Hsinchu, Taiwan
[2] Acad Sinica, Res Ctr Appl Sci, Taipei 115, Taiwan
关键词
Li-ion battery; cathode material; co-precipitation method; cobalt doping; lithium nickel oxides; discharge capacity;
D O I
10.1016/j.jpowsour.2004.12.001
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
LiNi0.6Co0.4-xMnxO2 (0.15 <= x <= 0.25) cathode materials for lithium-ion batteries are synthesized by calcining a mixture of Ni0.6Co0.4-xMnx(OH)(2) and Li2CO3 at 890-950 degrees C for 15 h in a flowing oxygen atmosphere. The Ni0.6Co0.4-xMnx(OH)(2) recursor is obtained by a chemical co-precipitation method at pH= 11. Thermal analysis of the precursor for LiNi0.6Co0.4-xMnxO2 (0.15 <= x <= 0.25) shows that the weight loss is about 30% until the temperature reaches 750 degrees C. The X-ray diffraction patterns indicate the pure, layered, hexagonal structure of LiNi0.6Co0.4-xMnxO2. Scanning electron micrographs reveal that the morphology of the samples is characterized by larger agglomerates (5-15 mu m) of rather small layered particles (around 100 nm). The particle size tends to decrease with increasing Mn content. The electrochemical behaviour of LiNi0.6Co0.4-xMnxO2 powder is examined by using test cells cycled within the voltage range 3-4.3 V at the 0.1 C rate for the first cycle and then at the 0.2 C rate. LiNi0.6Co0.4-xMnxO2 (0.15 <= x <= 0.25) cathode materials exhibit good initial discharge capacity (165-180 mAh g(-1)) and a capacity retention of above 95% after 20 cycles. It is demonstrated that LiNixCoyMn1-x-yO2 electrodes are promising candidates for application as cathodes in lithium-ion batteries. (c) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:212 / 218
页数:7
相关论文
共 21 条
[1]   Synthesis of layered LiMnO2 as an electrode for rechargeable lithium batteries [J].
Armstrong, AR ;
Bruce, PG .
NATURE, 1996, 381 (6582) :499-500
[2]   LiMn2O4 cathode doped with excess lithium and synthesized by co-precipitation for Li-ion batteries [J].
Chan, HW ;
Duh, JG ;
Sheen, SR .
JOURNAL OF POWER SOURCES, 2003, 115 (01) :110-118
[3]   Synthesis and electrochemical characterization of LiMO2 (M = Ni, Ni0.75Co0.25) for rechargeable lithium ion batteries [J].
Chang, CC ;
Scarr, N ;
Kumta, PN .
SOLID STATE IONICS, 1998, 112 (3-4) :329-344
[4]   Effects of cation mixing on the electrochemical lithium intercalation reaction into porous Li1-delta Ni1-yCoyO2 electrodes [J].
Choi, YM ;
Pyun, SI ;
Moon, SI .
SOLID STATE IONICS, 1996, 89 (1-2) :43-52
[5]   STRUCTURE AND ELECTROCHEMISTRY OF LI1+/-YNIO2 AND A NEW LI2NIO2 PHASE WITH THE NI(OH)2 STRUCTURE [J].
DAHN, JR ;
VONSACKEN, U ;
MICHAL, CA .
SOLID STATE IONICS, 1990, 44 (1-2) :87-97
[6]   An overview of the Li(Ni,M)O2 systems:: syntheses, structures and properties [J].
Delmas, C ;
Ménétrier, M ;
Croguennec, L ;
Saadoune, I ;
Rougier, A ;
Pouillerie, C ;
Prado, G ;
Grüne, M ;
Fournès, L .
ELECTROCHIMICA ACTA, 1999, 45 (1-2) :243-253
[7]   Influence of Mn content on the morphology and electrochemical performance of LiNi1-x-yCoxMnyO2 cathode materials [J].
Hwang, BJ ;
Tsai, YW ;
Chen, CH ;
Santhanam, R .
JOURNAL OF MATERIALS CHEMISTRY, 2003, 13 (08) :1962-1968
[8]   Preparation, structure, and thermal stability of new NixCo1-2xMnx(OH)2 (0≤x≤1/2) phases [J].
Jouanneau, S ;
Dahn, JR .
CHEMISTRY OF MATERIALS, 2003, 15 (02) :495-499
[9]   Effect of synthesis method on the electrochemical performance of LiNi1/3Mn1/3Co1/3O2 [J].
Li, DC ;
Muta, T ;
Zhang, LQ ;
Yoshio, M ;
Noguchi, H .
JOURNAL OF POWER SOURCES, 2004, 132 (1-2) :150-155
[10]   Synthesis and characterization of LiNixCoyMn1-x-yO2 as a cathode material for lithium ion batteries [J].
Liao, PY ;
Duh, JG .
HIGH-PERFORMANCE CERAMICS III, PTS 1 AND 2, 2005, 280-283 :677-682