共 13 条
Misclassification of the dependent variable in a discrete-response setting
被引:281
作者:
Hausman, JA
Abrevaya, J
Scott-Morton, FM
机构:
[1] MIT, Dept Econ, Cambridge, MA 02139 USA
[2] Univ Chicago, Grad Sch Business, Chicago, IL 60637 USA
基金:
美国国家科学基金会;
关键词:
binary choice model;
response error;
isotonic regression;
D O I:
10.1016/S0304-4076(98)00015-3
中图分类号:
F [经济];
学科分类号:
02 ;
摘要:
Misclassification of dependent variables in a discrete-response model causes inconsistent coefficient estimates when traditional estimation techniques (e.g., probit or legit) are used. A modified maximum likelihood estimator that corrects for misclassification is proposed. A semiparametric approach, which combines the maximum rank correlation estimator of Han (1987) (Journal of Econometrics 35, 303-316) with isotonic regression, allows for more general forms of misclassification than the maximum likelihood approach. The parametric and semiparametric estimation techniques are applied to a model of job change with two commonly used data sets, the Current Population Survey (CPS) and the Panel Study of Income Dynamics (PSID). (C) 1998 Elsevier Science S.A. All rights reserved.
引用
收藏
页码:239 / 269
页数:31
相关论文