EphB receptors and ephrinB ligands: regulators of vascular assembly and homeostasis

被引:54
作者
Augustin, HG [1 ]
Reiss, Y [1 ]
机构
[1] Tumor Biol Ctr, Dept Vasc Biol & Angiogenesis Res, D-79106 Freiburg, Germany
关键词
endothelial cells; angiogenesis; Eph; ephrin; homeostasis;
D O I
10.1007/s00441-003-0770-9
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Eph receptors comprise the largest family of receptor tyrosine kinases consisting of eight EphA receptors (with five corresponding glycosyl-phosphatidyl-inositol-anchored ephrinA ligands) and six EphB receptors (with three corresponding transmembrane ephrinB ligands). Originally identified as neuronal pathfinding molecules, genetic loss of function experiments have identified EphB receptors and ephrinB ligands as crucial regulators of vascular assembly, orchestrating arteriovenous differentiation and boundary formation. Despite these clearly defined rate-limiting roles of the EphB/ephrinB system for developmental angiogenesis, the mechanisms of the functions of EphB receptors and ephrinB ligands in the cells of the vascular system are poorly understood. Moreover, little evidence can be found in the recent literature regarding complementary EphB and ephrinB expression patterns that occur in the vascular system and that may bring cells into juxtapositional contact to allow bi-directional signaling between neighboring cells. This review summarizes the current knowledge of the role of EphB receptors and ephrinB ligands during embryonic vascular assembly and discusses recent findings on EphB/ephrinB-mediated cellular functions pointing to the crucial role of the Eph/ephrin system in controlling vascular homeostasis in the adult.
引用
收藏
页码:25 / 31
页数:7
相关论文
共 47 条
[1]   Vascular patterning by Eph receptor tyrosine kinases and ephrins [J].
Adams, RH .
SEMINARS IN CELL & DEVELOPMENTAL BIOLOGY, 2002, 13 (01) :55-60
[2]   The cytoplasmic domain of the ligand ephrinB2 is required for vascular morphogenesis but not cranial neural crest migration [J].
Adams, RH ;
Diella, F ;
Hennig, S ;
Helmbacher, F ;
Deutsch, U ;
Klein, R .
CELL, 2001, 104 (01) :57-69
[3]   Roles of ephrinB ligands and EphB receptors in cardiovascular development: demarcation of arterial/venous domains, vascular morphogenesis, and sprouting angiogenesis [J].
Adams, RH ;
Wilkinson, GA ;
Weiss, C ;
Diella, F ;
Gale, NW ;
Deutsch, U ;
Risau, W ;
Klein, R .
GENES & DEVELOPMENT, 1999, 13 (03) :295-306
[4]   β-catenin and TCF mediate cell positioning in the intestinal epithelium by controlling the expression of EphB/EphrinB [J].
Batlle, E ;
Henderson, JT ;
Beghtel, H ;
van den Born, MMW ;
Sancho, E ;
Huls, G ;
Meeldijk, J ;
Robertson, J ;
van de Wetering, M ;
Pawson, T ;
Clevers, H .
CELL, 2002, 111 (02) :251-263
[5]   Soluble Eph A receptors inhibit tumor angiogenesis and progression in vivo [J].
Brantley, DM ;
Cheng, N ;
Thompson, EJ ;
Lin, Q ;
Brekken, RA ;
Thorpe, PE ;
Muraoka, RS ;
Cerretti, DP ;
Pozzi, A ;
Jackson, D ;
Lin, C ;
Chen, J .
ONCOGENE, 2002, 21 (46) :7011-7026
[6]  
BURGER PC, 1983, LAB INVEST, V48, P169
[7]  
Carles-Kinch K, 2002, CANCER RES, V62, P2840
[8]   EphrinA1-induced cytoskeletal re-organization requires FAK and p130cas [J].
Carter, N ;
Nakamoto, T ;
Hirai, H ;
Hunter, T .
NATURE CELL BIOLOGY, 2002, 4 (08) :565-573
[9]  
CHEN E, 2003, P AM ASSOC CANC RES, V44, P475
[10]   The ephrins and Eph receptors in angiogenesis [J].
Cheng, N ;
Brantley, DM ;
Chen, J .
CYTOKINE & GROWTH FACTOR REVIEWS, 2002, 13 (01) :75-85