Exact relaxation in a class of nonequilibrium quantum lattice systems

被引:361
作者
Cramer, M. [1 ,2 ,4 ]
Dawson, C. M. [1 ,2 ]
Eisert, J. [1 ,2 ,4 ]
Osborne, T. J. [3 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, London SW7 2BW, England
[2] Univ London Imperial Coll Sci Technol & Med, Inst Math Sci, London SW7 2PE, England
[3] Univ London Royal Holloway & Bedford New Coll, Dept Math, Egham TW20 0EX, Surrey, England
[4] Univ Potsdam, Inst Phys, D-14469 Potsdam, Germany
关键词
D O I
10.1103/PhysRevLett.100.030602
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A reasonable physical intuition in the study of interacting quantum systems says that, independent of the initial state, the system will tend to equilibrate. In this work we introduce an experimentally accessible setting where relaxation to a steady state is exact, namely, for the Bose-Hubbard model quenched from a Mott quantum phase to the free strong superfluid regime. We rigorously prove that the evolving state locally relaxes to a steady state with maximum entropy constrained by second moments-thus maximizing the entanglement. Remarkably, for this to be true, no time average is necessary. Our argument includes a central limit theorem and exploits the finite speed of information transfer. We also show that for all periodic initial configurations (charge density waves) the system relaxes locally, and identify experimentally accessible signatures in optical lattices as well as implications for the foundations of statistical mechanics.
引用
收藏
页数:4
相关论文
共 32 条
[1]   Oscillating superfluidity of bosons in optical lattices [J].
Altman, E ;
Auerbach, A .
PHYSICAL REVIEW LETTERS, 2002, 89 (25) :1-250404
[2]   Lieb-robinson bounds and the generation of correlations and topological quantum order [J].
Bravyi, S. ;
Hastings, M. B. ;
Verstraete, F. .
PHYSICAL REVIEW LETTERS, 2006, 97 (05)
[3]   Unitarity, ergodicity and quantum thermodynamics [J].
Brody, Dorje C. ;
Hook, Daniel W. ;
Hughston, Lane P. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (26) :F503-F509
[4]   Time dependence of correlation functions following a quantum quench [J].
Calabrese, P ;
Cardy, J .
PHYSICAL REVIEW LETTERS, 2006, 96 (13)
[5]   Correlations, spectral gap and entanglement in harmonic quantum systems on generic lattices [J].
Cramer, M. ;
Eisert, J. .
NEW JOURNAL OF PHYSICS, 2006, 8
[6]   QUANTUM-MECHANICAL CENTRAL LIMIT THEOREM [J].
CUSHEN, CD ;
HUDSON, RL .
JOURNAL OF APPLIED PROBABILITY, 1971, 8 (03) :454-&
[7]   Entanglement entropy dynamics of Heisenberg chains [J].
De Chiara, G ;
Montangero, S ;
Calabrese, P ;
Fazio, R .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2006,
[8]   On the convergence to statistical equilibrium for harmonic crystals [J].
Dudnikova, TV ;
Komech, AI ;
Spohn, H .
JOURNAL OF MATHEMATICAL PHYSICS, 2003, 44 (06) :2596-2620
[9]   Towards quantum entanglement in nanoelectromechanical devices [J].
Eisert, J ;
Plenio, MB ;
Bose, S ;
Hartley, J .
PHYSICAL REVIEW LETTERS, 2004, 93 (19) :190402-1
[10]   General entanglement scaling laws from time evolution [J].
Eisert, Jens ;
Osborne, Tobias J. .
PHYSICAL REVIEW LETTERS, 2006, 97 (15)