Apg2 is a novel protein required for the cytoplasm to vacuole targeting, autophagy, and pexophagy pathways

被引:122
作者
Wang, CW
Kim, J
Huang, WP
Abeliovich, H
Stromhaug, PE
Dunn, WA
Klionsky, DJ
机构
[1] Univ Michigan, Dept Biol, Ann Arbor, MI 48109 USA
[2] Univ Florida, Coll Med, Dept Anat & Cell Biol, Gainesville, FL 32610 USA
关键词
D O I
10.1074/jbc.M102342200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
To survive starvation conditions, eukaryotes have developed an evolutionarily conserved process, termed autophagy, by which the vacuole/lysosome mediates the turnover and recycling of non-essential intracellular material for re-use in critical biosynthetic reactions. Morphological and biochemical studies in Saccharomyces cerevisiae have elucidated the basic steps and mechanisms of the autophagy pathway. Although it is a degradative process, autophagy shows substantial overlap with the biosynthetic cytoplasm to vacuole targeting (Cvt) pathway that delivers resident hydrolases to the vacuole. Recent molecular genetics analyses of mutants defective in autophagy and the Cvt pathway, apg, aut, and cvt, have begun to identify the protein machinery and provide a molecular resolution of the sequestration and import mechanism that are characteristic of these pathways. In this study, we have identified a novel protein, termed Apg2, required for both the Cvt and autophagy pathways as well as the specific degradation of peroxisomes. Apg2 is required for the formation and/or completion of cytosolic, sequestering vesicles that are needed for vacuolar import through both the Cvt pathway and autophagy. Biochemical studies revealed that Apg2 is a peripheral membrane protein. Apg2 localizes to the previously identified perivacuolar compartment that contains Apg9, the only characterized integral membrane protein that, is required for autophagosome/Cvt vesicle formation.
引用
收藏
页码:30442 / 30451
页数:10
相关论文
共 39 条
[1]   Dissection of autophagosome biogenesis into distinct nucleation and expansion steps [J].
Abeliovich, H ;
Dunn, WA ;
Kim, J ;
Klionsky, DJ .
JOURNAL OF CELL BIOLOGY, 2000, 151 (05) :1025-1033
[2]   Two distinct pathways for targeting proteins from the cytoplasm to the vacuole/lysosome [J].
Baba, M ;
Osumi, M ;
Scott, SV ;
Klionsky, DJ ;
Ohsumi, Y .
JOURNAL OF CELL BIOLOGY, 1997, 139 (07) :1687-1695
[3]   Apg5p functions in the sequestration step in the cytoplasm-to-vacuole targeting and macroautophagy pathways [J].
George, MD ;
Baba, M ;
Scott, SV ;
Mizushima, N ;
Garrison, BS ;
Ohsumi, Y ;
Klionsky, DJ .
MOLECULAR BIOLOGY OF THE CELL, 2000, 11 (03) :969-982
[4]   ISOLATION AND CHARACTERIZATION OF YEAST MUTANTS IN THE CYTOPLASM TO VACUOLE PROTEIN TARGETING PATHWAY [J].
HARDING, TM ;
MORANO, KA ;
SCOTT, SV ;
KLIONSKY, DJ .
JOURNAL OF CELL BIOLOGY, 1995, 131 (03) :591-602
[5]   Genetic and phenotypic overlap between autophagy and the cytoplasm to vacuole protein targeting pathway [J].
Harding, TM ;
HefnerGravink, A ;
Thumm, M ;
Klionsky, DJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (30) :17621-17624
[6]  
HARLOW E, 1999, USING ANTIBODIES LAB, P61
[7]  
HEINEMEYER W, 1993, J BIOL CHEM, V268, P5115
[8]   The itinerary of a vesicle component, Aut7p/Cvt5p, terminates in the yeast vacuole via the autophagy/Cvt pathways [J].
Huang, WP ;
Scott, SV ;
Kim, J ;
Klionsky, DJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (08) :5845-5851
[9]  
Hutchins MU, 1999, J CELL SCI, V112, P4079
[10]   A ubiquitin-like system mediates protein lipidation [J].
Ichimura, Y ;
Kirisako, T ;
Takao, T ;
Satomi, Y ;
Shimonishi, Y ;
Ishihara, N ;
Mizushima, N ;
Tanida, I ;
Kominami, E ;
Ohsumi, M ;
Noda, T ;
Ohsumi, Y .
NATURE, 2000, 408 (6811) :488-492