Rpb4, a non-essential subunit of core RNA polymerase II of Saccharomyces cerevisiae is important for activated transcription of a subset of genes

被引:35
作者
Pillai, B [1 ]
Sampath, V [1 ]
Sharma, N [1 ]
Sadhale, P [1 ]
机构
[1] Indian Inst Sci, Dept Microbiol & Cell Biol, Bangalore 560012, Karnataka, India
关键词
D O I
10.1074/jbc.M010952200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
A major role in the regulation of eukaryotic protein-coding genes is played by the gene-specific transcriptional regulators, which recruit the RNA polymerase II holoenzyme to the specific promoter. Several components of the mediator complex within the holoenzyme also have been shown to affect activation of different subsets of genes. Only recently has it been suggested that besides the largest subunit of RNA polymerase Il, smaller subunits like Rpb3 and Rpb5 may have regulatory roles in expression of specific sets of genes. We report here, the role of Rpb4, a non-essential subunit of core RNA polymerase II, in activation of a subset of genes in Saccharomyces cerevisiae. We have shown below that whereas constitutive transcription is largely unaffected, activation from various promoters tested is severely compromised in the absence of RPB4. This activation defect can be rescued by the overexpression of cognate activators. We have localized the region of Rpb4 involved in activation to the C-terminal 24 amino acids. We have also shown here that transcriptional activation by artificial recruitment of the TATA-binding protein (TBP) to the promoter is also defective in the absence of RPB4. Surprisingly, the overexpression of RPB7 (the interacting partner of Rpb4) does not rescue the activation defect of all the promoters tested, although it rescues the activation defect of the heat shock element-containing promoter and the temperature sensitivity associated with RPB4 deletion. Overall, our results indicate that Rpb4 and Rpb7 play independent roles in transcriptional regulation of genes.
引用
收藏
页码:30641 / 30647
页数:7
相关论文
共 43 条
[1]  
Ausubel FM, 1995, SHORT PROTOCOLS MOL
[2]   Heat stress transcription factors from tomato can functionally replace HSF1 in the yeast Saccharomyces cerevisiae [J].
Boscheinen, O ;
Lyck, R ;
Queitsch, C ;
Treuter, E ;
Zimarino, V ;
Scharf, KD .
MOLECULAR AND GENERAL GENETICS, 1997, 255 (03) :322-331
[3]   APPLICATIONS OF STATISTICAL CRITERIA IN PROTEIN-SEQUENCE ANALYSIS - CASE-STUDY OF YEAST RNA-POLYMERASE-II SUBUNITS [J].
BRENDEL, V ;
KARLIN, S .
COMPUTERS & CHEMISTRY, 1994, 18 (03) :251-253
[4]   CONNECTING A PROMOTER-BOUND PROTEIN TO TBP BYPASSES THE NEED FOR A TRANSCRIPTIONAL ACTIVATION DOMAIN [J].
CHATTERJEE, S ;
STRUHL, K .
NATURE, 1995, 374 (6525) :820-822
[5]   A PORTION OF RNA POLYMERASE-II MOLECULES HAS A COMPONENT ESSENTIAL FOR STRESS RESPONSES AND STRESS SURVIVAL [J].
CHODER, M ;
YOUNG, RA .
MOLECULAR AND CELLULAR BIOLOGY, 1993, 13 (11) :6984-6991
[6]   ProDom and ProDom-CG: tools for protein domain analysis and whole genome comparisons [J].
Corpet, F ;
Servant, F ;
Gouzy, J ;
Kahn, D .
NUCLEIC ACIDS RESEARCH, 2000, 28 (01) :267-269
[7]   Recent improvements of the ProDom database of protein domain families [J].
Corpet, F ;
Gouzy, J ;
Kahn, D .
NUCLEIC ACIDS RESEARCH, 1999, 27 (01) :263-267
[8]  
EDWARDS AM, 1991, J BIOL CHEM, V266, P71
[9]  
ESTOJAK J, 1995, MOL CELL BIOL, V15, P5820
[10]   A NOVEL GENETIC SYSTEM TO DETECT PROTEIN PROTEIN INTERACTIONS [J].
FIELDS, S ;
SONG, OK .
NATURE, 1989, 340 (6230) :245-246