PN approximation of the nonlinear semi-discrete Boltzmann equation

被引:4
作者
Koller, W [1 ]
Schürrer, F [1 ]
机构
[1] Graz Univ Technol, Inst Theoret Phys, A-8010 Graz, Austria
来源
TRANSPORT THEORY AND STATISTICAL PHYSICS | 2001年 / 30卷 / 4-6期
关键词
D O I
10.1081/TT-100105933
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a full velocity discretization of the nonlinear Boltzmann equation governing the evolution of a rarefied monatomic gas. Based on a semi-discrete model, an expansion of the angular dependence of the distribution function in terms of Legendre polynomials is performed. As a consequence of a detailed balance relation, the conservation of particle number, total momentum and energy is established for the resulting set of coupled nonlinear partial differential equations. This method, denoted as P-N multigroup approximation, proves very efficient for the study of non-equilibrium regimes with weakly anisotropic velocity distributions.
引用
收藏
页码:471 / 489
页数:19
相关论文
共 13 条
[1]  
[Anonymous], 1988, BOLTZMANN EQUATION I
[2]  
BELLOMO N, 1995, SERIES ADV MATH APPL, V33
[3]   CONTINUITY EQUATION IN THE STUDY OF NONLINEAR PARTICLE-TRANSPORT EVOLUTION PROBLEMS [J].
BOFFI, VC ;
SPIGA, G .
PHYSICAL REVIEW A, 1984, 29 (02) :782-790
[4]  
Gatignol R, 1975, Theorie Cinetique Des Gaz a Repartition Discrete de Vitesses
[5]  
HANSER F, UNPUB T TH STAT PHYS
[6]  
Jaffé G, 1930, ANN PHYS-BERLIN, V6, P195
[7]  
KOLLER W, 1999, RIV MAT U PARMA, V2, P159
[8]  
KUGERL G, 1992, Z NATURFORSCH A, V47, P925
[9]  
MONACO R, 1991, SERIES ADV MATH APPL, V3
[10]   GAS-PHASE THERMAL-GRATING CONTRIBUTIONS TO 4-WAVE-MIXING [J].
PAUL, PH ;
FARROW, RL ;
DANEHY, PM .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 1995, 12 (03) :384-392