Local efficiency of a Cramer-von!Mises test of independence

被引:33
作者
Genest, C [1 ]
Quessy, JF
Rémillard, B
机构
[1] Univ Laval, Dept Math & Stat, Ste Foy, PQ G1K 7P4, Canada
[2] Univ Quebec, Dept Math & Informat, Trois Rivieres, PQ G9A 5H7, Canada
[3] HEC Montreal, Serv Enseignement Methodes Quantitat Gest, Montreal, PQ H3T 2A7, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
asymptotic relative efficiency; contiguous alternatives; empirical copula process; linear rank statistics;
D O I
10.1016/j.jmva.2005.03.003
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Deheuvels proposed a rank test of independence based on a Cramer-von Mises functional of the empirical copula process. Using a general result on the asymptotic distribution of this process under sequences of contiguous alternatives, the local power curve of Deheuvels' test is computed in the bivariate case and compared to that of competing procedures based on linear rank statistics. The Gil-Pelaez inversion formula is used to make additional comparisons in terms of a natural extension of Pitman's measure of asymptotic relative efficiency. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:274 / 294
页数:21
相关论文
共 29 条
[1]  
ABDOUS B, 2005, STAT MODELING ANAL C, P1
[2]  
[Anonymous], EMPIRICAL PROCESSES
[3]   ASYMPTOTIC OPTIMALITY AND ARE OF CERTAIN RANK-ORDER TESTS UNDER CONTIGUITY [J].
BEHNEN, K .
ANNALS OF MATHEMATICAL STATISTICS, 1971, 42 (01) :325-&
[4]   CHARACTERIZATION OF CERTAIN RANK-ORDER TESTS WITH BOUNDS FOR ASYMPTOTIC RELATIVE EFFICIENCY [J].
BEHNEN, K .
ANNALS OF MATHEMATICAL STATISTICS, 1972, 43 (06) :1839-1851
[5]  
BHUCHONGKUL S, 1964, ANN MATH STAT, V42, P1839
[6]   Rank correlation - An alternative measure [J].
Blest, DC .
AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2000, 42 (01) :101-111
[7]  
Cherubini U., 2004, COPULA METHODS FINAN, DOI DOI 10.1002/9781118673331
[8]  
CIESIELSKA L, 1983, ZASTOSOW MAT, V18, P61
[9]   AN ASYMPTOTIC DECOMPOSITION FOR MULTIVARIATE DISTRIBUTION-FREE TESTS OF INDEPENDENCE [J].
DEHEUVELS, P .
JOURNAL OF MULTIVARIATE ANALYSIS, 1981, 11 (01) :102-113
[10]  
DEHEUVELS P, 1981, REV ROUM MATH PURE A, V26, P213