GmCOI1, a soybean F-box protein gene, shows ability to mediate jasmonate-regulated plant defense and fertility in Arabidopsis

被引:55
作者
Wang, ZL
Dai, LY
Jiang, ZD
Peng, W
Zhang, LH
Wang, GL
Xie, DX
机构
[1] Inst Mol & Cell Biol, Singapore 138673, Singapore
[2] Natl Univ Singapore, Dept Biol Sci, Singapore 117543, Singapore
[3] Ohio State Univ, Dept Plant Pathol, Columbus, OH 43210 USA
关键词
D O I
10.1094/MPMI-18-1285
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The F-box protein gene COIJ from Arabidopsis plays a fundamental role in response to jasmonates, which regulate plant root growth, pollen fertility, wounding and healing, and defense against pathogens and insects. Null mutations in COI1 were previously found to abolish all the jasmonate responses, and the Arabidopsis coi1-1 mutant is male sterile and susceptible to pathogen infection. In this study, we isolated an F-box protein gene from soybean, which shares significant homology with the Arabidopsis COI1 and similarly contains an F-box motif and leucine rich repeats (LRR), here designated GmCOI1 (Glycine max L. (Merr.) COI1). To test whether the sequence homology and structural similarity are indicative of functional conservation, we expressed GmCOI1 in the Arabidopsis coi1-1 mutant. The transgenic coi-1-1 plants with expression of the GmCOI1 gene were found to exhibit normal jasmonate responses, including jasmonate-regulated plant defense and fertility. In addition, the chimerical proteins with swapped domain of the F-box motif or LRR between GmCOI1 and COI1 were shown to functionally complement the coi1-1 mutation. Furthermore, GmCOI1 was found to assemble into the Skp1-Cullin-F-box (SCF) complexes, similar to the formation of the Arabidopsis SCFCOI1. These data demonstrate the soybean F-box protein gene GmCOI1 is able to mediate jasmonate-regulated plant defense and fertility in Arabidopsis, which implies a generic jasmonate pathway with conserved signal components in different plant species.
引用
收藏
页码:1285 / 1295
页数:11
相关论文
共 96 条
[1]   Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling [J].
Abe, H ;
Urao, T ;
Ito, T ;
Seki, M ;
Shinozaki, K ;
Yamaguchi-Shinozaki, K .
PLANT CELL, 2003, 15 (01) :63-78
[2]   Antagonistic interaction between abscisic acid and jasmonate-ethylene signaling pathways modulates defense gene expression and disease resistance in Arabidopsis [J].
Anderson, JP ;
Badruzsaufari, E ;
Schenk, PM ;
Manners, JM ;
Desmond, OJ ;
Ehlert, C ;
Maclean, DJ ;
Ebert, PR ;
Kazan, K .
PLANT CELL, 2004, 16 (12) :3460-3479
[3]  
BECHTOLD N, 1993, CR ACAD SCI III-VIE, V316, P1194
[4]   LIPOXYGENASE GENE-EXPRESSION IS MODULATED IN PLANTS BY WATER DEFICIT, WOUNDING, AND METHYL JASMONATE [J].
BELL, E ;
MULLET, JE .
MOLECULAR & GENERAL GENETICS, 1991, 230 (03) :456-462
[5]   A CHLOROPLAST LIPOXYGENASE IS REQUIRED FOR WOUND-INDUCED JASMONIC ACID ACCUMULATION IN ARABIDOPSIS [J].
BELL, E ;
CREELMAN, RA ;
MULLET, JE .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (19) :8675-8679
[6]   COI1-DEPENDENT EXPRESSION OF AN ARABIDOPSIS VEGETATIVE STORAGE PROTEIN IN FLOWERS AND SILIQUES AND IN RESPONSE TO CORONATINE OR METHYL JASMONATE [J].
BENEDETTI, CE ;
XIE, DX ;
TURNER, JG .
PLANT PHYSIOLOGY, 1995, 109 (02) :567-572
[7]   Arabidopsis in planta transformation. Uses, mechanisms, and prospects for transformation of other species [J].
Bent, AF .
PLANT PHYSIOLOGY, 2000, 124 (04) :1540-1547
[8]   ARABIDOPSIS-THALIANA ATVSP IS HOMOLOGOUS TO SOYBEAN VSPA AND VSPB, GENES ENCODING VEGETATIVE STORAGE PROTEIN ACID-PHOSPHATASES, AND IS REGULATED SIMILARLY BY METHYL JASMONATE, WOUNDING, SUGARS, LIGHT AND PHOSPHATE [J].
BERGER, S ;
BELL, E ;
SADKA, A ;
MULLET, JE .
PLANT MOLECULAR BIOLOGY, 1995, 27 (05) :933-942
[9]   Two methyl jasmonate-insensitive mutants show altered expression of AtVsp in response to methyl jasmonate and wounding [J].
Berger, S ;
Bell, E ;
Mullet, JE .
PLANT PHYSIOLOGY, 1996, 111 (02) :525-531
[10]   Differential induction of lipoxygenase isoforms in wheat upon treatment with rust fungus elicitor, chitin oligosaccharides, chitosan, and methyl jasmonate [J].
Bohland, C ;
Balkenhohl, T ;
Loers, G ;
Feussner, I ;
Grambow, HJ .
PLANT PHYSIOLOGY, 1997, 114 (02) :679-685