Rapid, Repeated, and Clustered Loss of Duplicate Genes in Allopolyploid Plant Populations of Independent Origin

被引:129
作者
Buggs, Richard J. A. [1 ,2 ,3 ]
Chamala, Srikar [1 ,4 ]
Wu, Wei [5 ]
Tate, Jennifer A. [6 ]
Schnable, Patrick S. [5 ]
Soltis, Douglas E. [1 ,4 ]
Soltis, Pamela S. [2 ,4 ]
Barbazuk, W. Brad [1 ,4 ]
机构
[1] Univ Florida, Dept Biol, Gainesville, FL 32611 USA
[2] Univ Florida, Florida Museum Nat Hist, Gainesville, FL 32611 USA
[3] Queen Mary Univ London, Sch Biol & Chem Sci, London E1 4NS, England
[4] Univ Florida, Genet Inst, Gainesville, FL 32610 USA
[5] Iowa State Univ, Ctr Plant Genom, Ames, IA 50011 USA
[6] Massey Univ, Inst Mol Biosci, Palmerston North 4442, New Zealand
基金
美国国家科学基金会; 英国自然环境研究理事会;
关键词
TRAGOPOGON-MISCELLUS ASTERACEAE; RESYNTHESIZED BRASSICA-NAPUS; SYNTHETIC POLYPLOIDS; GENOMIC CHANGES; WHOLE-GENOME; EVOLUTION; ARABIDOPSIS; EXPRESSION; DYNAMICS;
D O I
10.1016/j.cub.2011.12.027
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The predictability of evolution is debatable, with recent evidence suggesting that outcomes may be constrained by gene interaction networks [1]. Whole-genome duplication (WGD; polyploidization-ubiquitous in plant evolution [2]) provides the opportunity to evaluate the predictability of genome reduction, a pervasive feature of evolution [3, 4]. Repeated patterns of genome reduction appear to have occurred via duplicated gene (homeolog) loss in divergent species following ancient WGD [5-9], with evidence for preferential retention of duplicates in certain gene classes [8-10]. The speed at which these patterns arise is unknown. We examined presence/absence of 70 homeologous loci in 59 Tragopogon miscellus plants from five natural populations of independent origin; this allotetraploid arose similar to 80 years ago via hybridization between diploid parents and WGD [11]. Genes were repeatedly retained or lost in clusters, and the gene ontology categories of the missing genes correspond to those lost after ancient WGD in the same family (Asteraceae; sunflower family) [6] and with gene dosage sensitivity [8]. These results provide evidence that the outcomes of WGD are predictable, even in 40 generations, perhaps due to the connectivity of gene products [8, 10, 12]. The high frequency of single-allele losses detected and low frequency of changes fixed within populations provide evidence for ongoing evolution.
引用
收藏
页码:248 / 252
页数:5
相关论文
共 39 条
  • [1] Selection upon Genome Architecture: Conservation of Functional Neighborhoods with Changing Genes
    Al-Shahrour, Fatima
    Minguez, Pablo
    Marques-Bonet, Tomas
    Gazave, Elodie
    Navarro, Arcadi
    Dopazo, Joaquin
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2010, 6 (10)
  • [2] Phenotypic, genetic and genomic consequences of natural and synthetic polyploidization of Nicotiana attenuata and Nicotiana obtusifolia
    Anssour, S.
    Kruegel, T.
    Sharbel, T. F.
    Saluz, H. P.
    Bonaventure, G.
    Baldwin, I. T.
    [J]. ANNALS OF BOTANY, 2009, 103 (08) : 1207 - 1217
  • [3] Multiple Paleopolyploidizations during the Evolution of the Compositae Reveal Parallel Patterns of Duplicate Gene Retention after Millions of Years
    Barker, Michael S.
    Kane, Nolan C.
    Matvienko, Marta
    Kozik, Alexander
    Michelmore, W.
    Knapp, Steven J.
    Rieseberg, Loren H.
    [J]. MOLECULAR BIOLOGY AND EVOLUTION, 2008, 25 (11) : 2445 - 2455
  • [4] Dosage balance in gene regulation: biological implications
    Birchler, JA
    Riddle, NC
    Auger, DL
    Veitia, RA
    [J]. TRENDS IN GENETICS, 2005, 21 (04) : 219 - 226
  • [5] Gene loss and silencing in Tragopogon miscellus (Asteraceae): comparison of natural and synthetic allotetraploids
    Buggs, R. J. A.
    Doust, A. N.
    Tate, J. A.
    Koh, J.
    Soltis, K.
    Feltus, F. A.
    Paterson, A. H.
    Soltis, P. S.
    Soltis, D. E.
    [J]. HEREDITY, 2009, 103 (01) : 73 - 81
  • [6] Characterization of duplicate gene evolution in the recent natural allopolyploid Tragopogon miscellus by next-generation sequencing and Sequenom iPLEX MassARRAY genotyping
    Buggs, Richard J. A.
    Chamala, Srikar
    Wu, Wei
    Gao, Lu
    May, Gregory D.
    Schnable, Patrick S.
    Soltis, Douglas E.
    Soltis, Pamela S.
    Barbazuk, W. Brad
    [J]. MOLECULAR ECOLOGY, 2010, 19 : 132 - 146
  • [7] Co-expression of neighbouring genes in Arabidopsis: separating chromatin effects from direct interactions
    Chen, Wei-Hua
    de Meaux, Juliette
    Lercher, Martin J.
    [J]. BMC GENOMICS, 2010, 11
  • [8] Extensive chromosomal variation in a recently formed natural allopolyploid species, Tragopogon miscellus (Asteraceae)
    Chester, Michael
    Gallagher, Joseph P.
    Symonds, V. Vaughan
    Cruz da Silva, Ana Veruska
    Mavrodiev, Evgeny V.
    Leitch, Andrew R.
    Soltis, Pamela S.
    Soltis, Douglas E.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (04) : 1176 - 1181
  • [9] Comparative Evolution of Photosynthetic Genes in Response to Polyploid and Nonpolyploid Duplication
    Coate, Jeremy E.
    Schlueter, Jessica A.
    Whaley, Adam M.
    Doyle, Jeff J.
    [J]. PLANT PHYSIOLOGY, 2011, 155 (04) : 2081 - 2095
  • [10] Massive gene decay in the leprosy bacillus
    Cole, ST
    Eiglmeier, K
    Parkhill, J
    James, KD
    Thomson, NR
    Wheeler, PR
    Honoré, N
    Garnier, T
    Churcher, C
    Harris, D
    Mungall, K
    Basham, D
    Brown, D
    Chillingworth, T
    Connor, R
    Davies, RM
    Devlin, K
    Duthoy, S
    Feltwell, T
    Fraser, A
    Hamlin, N
    Holroyd, S
    Hornsby, T
    Jagels, K
    Lacroix, C
    Maclean, J
    Moule, S
    Murphy, L
    Oliver, K
    Quail, MA
    Rajandream, MA
    Rutherford, KM
    Rutter, S
    Seeger, K
    Simon, S
    Simmonds, M
    Skelton, J
    Squares, R
    Squares, S
    Stevens, K
    Taylor, K
    Whitehead, S
    Woodward, JR
    Barrell, BG
    [J]. NATURE, 2001, 409 (6823) : 1007 - 1011