Diffusivities of Ar and Ne in carbon nanotubes

被引:144
作者
Ackerman, DM
Skoulidas, AI
Sholl, DS
Johnson, JK [1 ]
机构
[1] Univ Pittsburgh, Dept Chem & Petr Engn, Pittsburgh, PA 15261 USA
[2] Carnegie Mellon Univ, Dept Chem Engn, Pittsburgh, PA 15213 USA
[3] Natl Energy Technol Lab, Pittsburgh, PA 15236 USA
[4] Univ London Imperial Coll Sci Technol & Med, Dept Chem, Kensington SW7 2AY, England
基金
美国国家科学基金会;
关键词
argon diffusivity; carbon nanotube membranes; neon diffusivity; silicalite membranes;
D O I
10.1080/0892702031000103239
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Atomically detailed simulations are used to compute the self-diffusivity and transport diffusivity of Ar and Ne through single walled carbon nanotube (SWNT) pores at room temperature. The diffusivities are computed over a range of loadings, corresponding to external equilibrium bulk pressures ranging from 0 to 100 bar. The diffusivities in carbon nanotubes are compared with diffusivities of the same gases in silicalite, a common zeolite, under the same conditions. We find that self-diffusivities are one to three orders of magnitude faster in carbon nanotubes than in silicalite, depending on loading. The transport diffusivities are about three orders of magnitude faster in nanotubes than in silicalite over all loadings studied. The equilibrium adsorption isotherms and computed diffusivities are used to predict fluxes through hypothetical membranes of nanotubes and silicalite. The fluxes for both Ar and Ne are predicted to be four orders of magnitude greater through nanotube membranes than through silicalite membranes of the same thickness.
引用
收藏
页码:677 / 684
页数:8
相关论文
共 55 条
[1]   The diffusion process of methane through a silicalite single crystal membrane [J].
Ahunbay, MG ;
Elliott, JR ;
Talu, O .
JOURNAL OF PHYSICAL CHEMISTRY B, 2002, 106 (20) :5163-5168
[2]  
Allen M. P., 1987, COMPUTER SIMULATIONS, DOI [10.1093/oso/9780198803195.001.0001, DOI 10.1093/OSO/9780198803195.001.0001]
[3]  
[Anonymous], SPRINGER TRACTS MODE
[4]   Theory and simulation of jump dynamics, diffusion and phase equilibrium in nanopores [J].
Auerbach, SM .
INTERNATIONAL REVIEWS IN PHYSICAL CHEMISTRY, 2000, 19 (02) :155-198
[5]   COBALT-CATALYZED GROWTH OF CARBON NANOTUBES WITH SINGLE-ATOMIC-LAYERWALLS [J].
BETHUNE, DS ;
KIANG, CH ;
DEVRIES, MS ;
GORMAN, G ;
SAVOY, R ;
VAZQUEZ, J ;
BEYERS, R .
NATURE, 1993, 363 (6430) :605-607
[6]   A comparison of atomistic simulations and experimental measurements of light gas permeation through zeolite membranes [J].
Bowen, TC ;
Falconer, JL ;
Noble, RD ;
Skoulidas, AI ;
Sholl, DS .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2002, 41 (06) :1641-1650
[7]  
Brenner DW, 2000, PHYS STATUS SOLIDI B, V217, P23, DOI 10.1002/(SICI)1521-3951(200001)217:1<23::AID-PSSB23>3.0.CO
[8]  
2-N
[9]   EMPIRICAL POTENTIAL FOR HYDROCARBONS FOR USE IN SIMULATING THE CHEMICAL VAPOR-DEPOSITION OF DIAMOND FILMS [J].
BRENNER, DW .
PHYSICAL REVIEW B, 1990, 42 (15) :9458-9471
[10]   A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons [J].
Brenner, DW ;
Shenderova, OA ;
Harrison, JA ;
Stuart, SJ ;
Ni, B ;
Sinnott, SB .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2002, 14 (04) :783-802