Consistent specification testing with nuisance parameters present only under the alternative

被引:152
作者
Stinchcombe, MB [1 ]
White, H [1 ]
机构
[1] Univ Calif San Diego, Dept Econ, La Jolla, CA 92093 USA
关键词
D O I
10.1017/S0266466698143013
中图分类号
F [经济];
学科分类号
02 ;
摘要
The nonparametric and the nuisance parameter approaches to consistently testing statistical models are both attempts to estimate topological measures of distance between a parametric and a nonparametric fit, and neither dominates in experiments. This topological unification allows us to greatly extend the nuisance parameter approach. Bow and why the nuisance parameter approach works and how it can be extended bear closely on recent developments in artificial neural networks. Statistical content is provided by viewing specification tests with nuisance parameters as tests of hypotheses about Banach-valued random elements and applying the Banach central limit theorem and law of iterated logarithm, leading to simple procedures that can be used as a guide to when computationally more elaborate procedures may be warranted.
引用
收藏
页码:295 / 325
页数:31
相关论文
共 53 条
[1]  
Andrews D.W.K., 1993, Econometric Rev., V12, P183
[2]   OPTIMAL TESTS WHEN A NUISANCE PARAMETER IS PRESENT ONLY UNDER THE ALTERNATIVE [J].
ANDREWS, DWK ;
PLOBERGER, W .
ECONOMETRICA, 1994, 62 (06) :1383-1414
[3]   A conditional Kolmogorov test [J].
Andrews, DWK .
ECONOMETRICA, 1997, 65 (05) :1097-1128
[4]  
Ash R. B., 1972, REAL ANAL PROBABILIT, DOI DOI 10.1016/C2013-0-06164-6
[5]  
Bierens H., 1982, J ECONOMETRICS, V26, P323
[6]   A CONSISTENT CONDITIONAL MOMENT TEST OF FUNCTIONAL FORM [J].
BIERENS, HJ .
ECONOMETRICA, 1990, 58 (06) :1443-1458
[7]  
Billingsley P, 1968, CONVERGE PROBAB MEAS
[8]  
BLUM JR, 1961, ANN MATH STAT, V32, P485, DOI 10.1214/aoms/1177705055
[9]   A SMOOTHING SPLINE BASED TEST OF MODEL ADEQUACY IN POLYNOMIAL REGRESSION [J].
COX, D ;
KOH, E .
ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 1989, 41 (02) :383-400
[10]   TESTING THE (PARAMETRIC) NULL MODEL HYPOTHESIS IN (SEMIPARAMETRIC) PARTIAL AND GENERALIZED SPLINE MODELS [J].
COX, D ;
KOH, E ;
WAHBA, G ;
YANDELL, BS .
ANNALS OF STATISTICS, 1988, 16 (01) :113-119