High-Throughput Screening of MOF Adsorbents and Membranes for H2 Purification and CO2 Capture

被引:151
作者
Avci, Gokay [1 ]
Velioglu, Sadiye [1 ]
Keskin, Seda [1 ]
机构
[1] Koc Univ, Dept Chem & Biol Engn, TR-34450 Istanbul, Turkey
基金
欧洲研究理事会;
关键词
metal organic frameworks; H-2; purification; CO2; capture; pressure swing adsorption; membrane; molecular simulations; METAL-ORGANIC FRAMEWORKS; CARBON-DIOXIDE SEPARATION; MOLECULAR SIMULATION; GAS-ADSORPTION; ZEOLITES; CO2/N-2; PERFORMANCE; EQUILIBRIA; NITROGEN; DATABASE;
D O I
10.1021/acsami.8b12746
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Metal organic frameworks (MOFs) have emerged as great adsorbent and membrane candidates for separation of CO2/H-2 mixtures. The main challenge is the existence of thousands of MOFs, which requires computational screening methods to identify the best materials prior to experimental efforts. In this study, we performed high-throughput computational screening of MOFs to examine their adsorbent and membrane performances for CO2/H-2 separation. Grand canonical Monte Carlo (GCMC) and molecular dynamics (MD) simulations were used to compute various adsorbent and membrane performance metrics of 3857 MOFs. CO2/H-2 adsorption selectivities of MOFs at pressure swing adsorption (PSA) and vacuum swing adsorption (VSA) conditions were calculated to be in the range of 2.5-25 000 and 2.5-85 000, respectively, outperforming many zeolite adsorbents. Correlations between the ranking of MOF adsorbents at the PSA and VSA conditions were examined. H-2/CO2 selectivities and H-2 permeabilities of MOF membranes were computed as 2.1 X 10(-5)-6.3 and 230-1.7 X 10(6) Barrer, respectively. A high number of MOF membranes was identified to surpass the upper bound defined for gas permeabilities of MOFs. Structure performance relations revealed that MOFs with narrow pore sizes the best adsorbent materials for separation of CO2 from H-2, whereas MOFs with large pore sizes and high polymers due to high and low porosities are porosities are the best membrane materials for selective separation of H-2. Our results will guide the selection of MOF adsorbents and membranes for efficient H-2 purification and CO2 capture processes.
引用
收藏
页码:33693 / 33706
页数:14
相关论文
共 78 条
[1]   Application of MD Simulations to Predict Membrane Properties of MOFs [J].
Adatoz, Elda ;
Keskin, Seda .
JOURNAL OF NANOMATERIALS, 2015, 2015
[2]   The Cambridge Structural Database: a quarter of a million crystal structures and rising [J].
Allen, FH .
ACTA CRYSTALLOGRAPHICA SECTION B-STRUCTURAL SCIENCE, 2002, 58 (3 PART 1) :380-388
[3]   Computer simulations of 4240 MOF membranes for H2/CH4 separations: insights into structure-performance relations [J].
Altintas, Cigdem ;
Avci, Gokay ;
Daglar, Hilal ;
Gulcay, Ezgi ;
Erucar, Ilknur ;
Keskin, Seda .
JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (14) :5836-5847
[4]   High-Throughput Computational Screening of the Metal Organic Framework Database for CH4/H2 Separations [J].
Altintas, Cigdem ;
Erucar, Ilknur ;
Keskin, Seda .
ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (04) :3668-3679
[5]   Upgrade of natural gas in rho zeolite-like metal-organic framework and effect of water: a computational study [J].
Babarao, Ravichandar ;
Jiang, Jianwen .
ENERGY & ENVIRONMENTAL SCIENCE, 2009, 2 (10) :1088-1093
[6]   Development and Evaluation of Porous Materials for Carbon Dioxide Separation and Capture [J].
Bae, Youn-Sang ;
Snurr, Randall Q. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2011, 50 (49) :11586-11596
[7]   A Calcium Coordination Framework Having Permanent Porosity and High CO2/N2 Selectivity [J].
Banerjee, Debasis ;
Zhang, Zhijuan ;
Plonka, Anna M. ;
Li, Jing ;
Parise, John B. .
CRYSTAL GROWTH & DESIGN, 2012, 12 (05) :2162-2165
[8]   Simulation and modelling of MOFs for hydrogen storage [J].
Basdogan, Yasemin ;
Keskin, Seda .
CRYSTENGCOMM, 2015, 17 (02) :261-275
[9]   Low concentration CO2 capture using physical adsorbents: Are metal-organic frameworks becoming the new benchmark materials? [J].
Belmabkhout, Youssef ;
Guillerm, Vincent ;
Eddaoudi, Mohamed .
CHEMICAL ENGINEERING JOURNAL, 2016, 296 :386-397
[10]   PATH-INTEGRAL SIMULATIONS OF MIXED PARA-D-2 AND ORTHO-D-2 CLUSTERS - THE ORIENTATIONAL EFFECTS [J].
BUCH, V .
JOURNAL OF CHEMICAL PHYSICS, 1994, 100 (10) :7610-7629