Extensive chromosomal instability in Rad51d-deficient mouse cells

被引:76
作者
Smiraldo, PG [1 ]
Gruver, AM [1 ]
Osborn, JC [1 ]
Pittman, DL [1 ]
机构
[1] Med Coll Ohio, Dept Physiol, Toledo, OH 43614 USA
关键词
D O I
10.1158/0008-5472.CAN-04-2079
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Homologous recombination is a double-strand break repair pathway required for resistance to DNA damage and maintaining genomic integrity. In mitotically dividing vertebrate cells, the primary proteins involved in homologous recombination repair are RAD51 and the five RAD51 paralogs, RAD51B, RAD51C, RAD51D, XRCC2, and XRCC3. In the absence of Rad51d, human and mouse cells fail to proliferate, and mice defective for Rad51d die before birth, likely as a result of genomic instability and p53 activation. Here, we report that a p53 deletion is sufficient to extend the life span of Rad51d-deficient embryos by up to 6 days and rescue the cell lethal phenotype. The Rad51d(-/-) Trp53(-/-) mouse embryo-derived fibroblasts were sensitive to DNA-damaging agents, particularly interstrand cross-links, and exhibited extensive chromosome instability including aneuploidy, chromosome fragments, deletions, and complex rearrangements. Additionally, loss of Rad51d resulted in increased centrosome fragmentation and reduced levels of radiation-induced RAD51-focus formation. Spontaneous frequencies of sister chromatid exchange were not affected by the absence of Rad51d, but sister chromatid exchange frequencies did fail to be induced upon challenge with the DNA cross-linking agent mitomycin C. These findings support a crucial role for mammalian RAD51D in normal development, recombination, and maintaining mammalian genome stability.
引用
收藏
页码:2089 / 2096
页数:8
相关论文
共 58 条
[1]   Telomere dysfunction promotes non-reciprocal translocations and epithelial cancers in mice [J].
Artandi, SE ;
Chang, S ;
Lee, SL ;
Alson, S ;
Gottlieb, GJ ;
Chin, L ;
DePinho, RA .
NATURE, 2000, 406 (6796) :641-645
[2]   Targeted disruption of the gene encoding DNA ligase IV leads to lethality in embryonic mice [J].
Barnes, DE ;
Stamp, G ;
Rosewell, I ;
Denzel, A ;
Lindahl, T .
CURRENT BIOLOGY, 1998, 8 (25) :1395-1398
[3]   The RAD51 family member, RAD51L3, is a DNA-stimulated ATPase that forms a complex with XRCC2 [J].
Braybrooke, JP ;
Spink, KG ;
Thacker, J ;
Hickson, ID .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (37) :29100-29106
[4]   Functional interaction between the Bloom's syndrome helicase and the RAD51 paralog, RAD51L3 (RAD51D) [J].
Braybrooke, JP ;
Li, JL ;
Wu, L ;
Caple, F ;
Benson, FE ;
Hickson, ID .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (48) :48357-48366
[5]   Isolation of novel human and mouse genes of the recA/RAD51 recombination-repair gene family [J].
Cartwright, R ;
Dunn, AM ;
Simpson, PJ ;
Tambini, CE ;
Thacker, J .
NUCLEIC ACIDS RESEARCH, 1998, 26 (07) :1653-1659
[6]   Expression of BRC repeats in breast cancer cells disrupts the BRCA2-Rad51 complex and leads to radiation hypersensitivity and loss of G2/M checkpoint control [J].
Chen, CF ;
Chen, PL ;
Zhong, Q ;
Sharp, ZD ;
Lee, WH .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (46) :32931-32935
[7]   The BRC repeats in BRCA2 are critical for RAD51 binding and resistance to methyl methanesulfonate treatment [J].
Chen, PL ;
Chen, CF ;
Chen, YM ;
Xiao, J ;
Sharp, ZD ;
Lee, WH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (09) :5287-5292
[8]   p53 deficiency rescues the adverse effects of telomere loss and cooperates with telomere dysfunction to accelerate carcinogenesis [J].
Chin, L ;
Artandi, SE ;
Shen, Q ;
Tam, A ;
Lee, SL ;
Gottlieb, GJ ;
Greider, CW ;
DePinho, RA .
CELL, 1999, 97 (04) :527-538
[9]   DO WE KNOW THE CAUSE OF XERODERMA-PIGMENTOSUM [J].
CLEAVER, JE .
CARCINOGENESIS, 1990, 11 (06) :875-882
[10]  
Deans B, 2003, CANCER RES, V63, P8181