Laser-induced inter-diffusion in AuAg core-shell nanoparticles

被引:319
作者
Hodak, JH
Henglein, A
Giersig, M
Hartland, GV [1 ]
机构
[1] Univ Notre Dame, Dept Chem & Biochem, Notre Dame, IN 46556 USA
[2] Univ Notre Dame, Radiat Lab, Notre Dame, IN 46556 USA
[3] Hahn Meitner Inst Berlin GmbH, D-14109 Berlin, Germany
关键词
D O I
10.1021/jp002438r
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The preparation of gold-silver nanoparticles with a core-shell structure by radiation chemistry is described. The optical properties of particles containing Au cores and Ag shells are compared to those of the reverse system for a variety of overall particle compositions. Nanosecond and picosecond laser-induced heating (at 532 nm) is used to melt the AU(core)Ag(shell) particles into homogeneous alloyed nanoparticles. The transition from the kinetically stable core-shell structure to the alloy is demonstrated by TEM and by the spectral changes accompanying melting. It is found that the particles must accumulate many laser pulses to completely mix into the alloy. In the case of nanosecond excitation, alloying and reshaping from faceted and irregular particles into smooth spheres occurs at absorbed energies of 5-6 mJ/pulse, and fragmentation takes place at higher energies, >10 mJ/pulse. In the case of 30 ps laser excitation, the thresholds for alloying/reshaping and fragmentation are lower: 1 and 4 ml/pulse, respectively. The higher energy threshold for nanosecond excitation compared to the picosecond case is due to dissipation of the absorbed energy to the solvent during excitation, which is estimated to occur on a 100-200 ps time scale. Thus, the temperatures reached in the particles by nanosecond excitation are lower than those achieved by picosecond excitation for equal pulse energies.
引用
收藏
页码:11708 / 11718
页数:11
相关论文
共 47 条
[1]   Effect of cobalt-59 self-decoupling on the solid-state 31P CP/MAS NMR spectra of cobaloximes [J].
Schurko, Robert W. ;
Wasylishen, Roderick E. ;
Nelson, John H. .
Journal of physical chemistry, 1996, 100 (20) :8053-8056
[2]   SMALL PARTICLE MELTING OF PURE METALS [J].
ALLEN, GL ;
BAYLES, RA ;
GILE, WW ;
JESSER, WA .
THIN SOLID FILMS, 1986, 144 (02) :297-308
[3]  
Ashcroft N. W., 1973, SOLID STATE PHYS
[4]   SOLID-LIQUID TRANSITION IN ULTRA-FINE LEAD PARTICLES [J].
BENDAVID, T ;
LEREAH, Y ;
DEUTSCHER, G ;
KOFMAN, R ;
CHEYSSAC, P .
PHILOSOPHICAL MAGAZINE A-PHYSICS OF CONDENSED MATTER STRUCTURE DEFECTS AND MECHANICAL PROPERTIES, 1995, 71 (05) :1135-1143
[5]   SIZE EFFECT ON MELTING TEMPERATURE OF GOLD PARTICLES [J].
BUFFAT, P ;
BOREL, JP .
PHYSICAL REVIEW A, 1976, 13 (06) :2287-2298
[6]   The shape transition of gold nanorods [J].
Chang, SS ;
Shih, CW ;
Chen, CD ;
Lai, WC ;
Wang, CRC .
LANGMUIR, 1999, 15 (03) :701-709
[7]   Spectrally coded optical data storage by metal nanoparticles [J].
Ditlbacher, H ;
Krenn, JR ;
Lamprecht, B ;
Leitner, A ;
Aussenegg, FR .
OPTICS LETTERS, 2000, 25 (08) :563-565
[8]   FEMTOSECOND THERMOREFLECTIVITY AND THERMOTRANSMISSIVITY OF POLYCRYSTALLINE AND SINGLE-CRYSTALLINE GOLD-FILMS [J].
ELSAYEDALI, HE ;
JUHASZ, T ;
SMITH, GO ;
BRON, WE .
PHYSICAL REVIEW B, 1991, 43 (05) :4488-4491
[9]   COAGULATION OF COLLOIDAL GOLD [J].
ENUSTUN, BV ;
TURKEVICH, J .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1963, 85 (21) :3317-+
[10]   Visible laser induced fusion and fragmentation of thionicotinamide-capped gold nanoparticles [J].
Fujiwara, H ;
Yanagida, S ;
Kamat, PV .
JOURNAL OF PHYSICAL CHEMISTRY B, 1999, 103 (14) :2589-2591