Mass spectrometric evidence for mechanisms of fragmentation of charge-derivatized peptides

被引:36
作者
Sadagopan, N
Watson, JT [1 ]
机构
[1] Michigan State Univ, Dept Chem, E Lansing, MI 48824 USA
[2] Michigan State Univ, Dept Biochem, E Lansing, MI 48824 USA
关键词
D O I
10.1016/S1044-0305(01)00211-2
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Mass spectrometry of charged derivatives of peptides has been a growing area of interest in the past decade. Fragmentation of charged derivatives of peptides is believed to be different from than that of protonated peptides when analyzed by collisionally activated dissociation-tandem mass spectrometry (CAD-MS/MS). The charged derivatives fragment by charge-remote fragmentation mechanisms, which are usually classified as high-energy (HE)-CAD processes. Our objective in the present study is to investigate the mechanism of fragmentation of charged derivatives of peptides when analyzed by matrix-assisted laser desorption/ionization-post-source decay-mass spectrometry (MALDI-PSD-MS) and electrospray ionization (ESI)-CAD-MS/MS (ion trap), which involve low-energy processes. Three major types of hydrogens (alpha, beta, and amide) are available for migration during the formation of the *a(n) ions (the predominant ion series produced from these charged derivatives). To pinpoint which of the three hydrogens is involved in the formation of the *a(n) ions, deuterium-labeled peptide derivatives with labels at specific sites were synthesized and analyzed by MALDI-PSD-MS and ESI-CAD-MS/MS. Our results suggest that the amide hydrogen of the residue at which the cleavage occurs shifts during the formation of *a(n); this observation serves as evidence for the mechanism proposed earlier by Liao et al. for fragmentation of such charged derivatives. The results also help elucidate the structure of the *a(n) ions, *b(n) ions, and others formed during cleavage at the proline residue, as well as the ions formed during loss of the C-terminal residue from these charged-derivatives. (C) 2001 American Society for Mass Spectrometry.
引用
收藏
页码:399 / 409
页数:11
相关论文
共 24 条
[1]  
BARANY G, 1980, PEPTIDE ANAL SYNTHES
[2]  
Bauer MD, 2000, RAPID COMMUN MASS SP, V14, P924, DOI 10.1002/(SICI)1097-0231(20000530)14:10<924::AID-RCM967>3.0.CO
[3]  
2-X
[4]   CHARGE PROMOTION OF LOW-ENERGY FRAGMENTATIONS OF PEPTIDE IONS [J].
BURLET, O ;
ORKISZEWSKI, RS ;
BALLARD, KD ;
GASKELL, SJ .
RAPID COMMUNICATIONS IN MASS SPECTROMETRY, 1992, 6 (11) :658-662
[5]   Influence of peptide composition, gas-phase basicity, and chemical modification on fragmentation efficiency: Evidence for the mobile proton model [J].
Dongre, AR ;
Jones, JL ;
Somogyi, A ;
Wysocki, VH .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1996, 118 (35) :8365-8374
[6]   A picomole-scale method for charge derivatization of peptides for sequence analysis by mass spectrometry [J].
Huang, ZH ;
Wu, J ;
Roth, KDW ;
Yang, Y ;
Gage, DA ;
Watson, JT .
ANALYTICAL CHEMISTRY, 1997, 69 (02) :137-144
[7]   PROTEIN SEQUENCING BY TANDEM MASS-SPECTROMETRY [J].
HUNT, DF ;
YATES, JR ;
SHABANOWITZ, J ;
WINSTON, S ;
HAUER, CR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1986, 83 (17) :6233-6237
[8]   NOVEL FRAGMENTATION PROCESS OF PEPTIDES BY COLLISION-INDUCED DECOMPOSITION IN A TANDEM MASS-SPECTROMETER - DIFFERENTIATION OF LEUCINE AND ISOLEUCINE [J].
JOHNSON, RS ;
MARTIN, SA ;
BIEMANN, K ;
STULTS, JT ;
WATSON, JT .
ANALYTICAL CHEMISTRY, 1987, 59 (21) :2621-2625
[9]   PROTON MOBILITY WITHIN ELECTROSPRAYED PEPTIDE IONS [J].
JOHNSON, RS ;
KRYLOV, D ;
WALSH, KA .
JOURNAL OF MASS SPECTROMETRY, 1995, 30 (02) :386-387
[10]   SEQUENCE DEPENDENCE OF PEPTIDE FRAGMENTATION EFFICIENCY CURVES DETERMINED BY ELECTROSPRAY-IONIZATION SURFACE-INDUCED DISSOCIATION MASS-SPECTROMETRY [J].
JONES, JL ;
DONGRE, AR ;
SOMOGYI, A ;
WYSOCKI, VH .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1994, 116 (18) :8368-8369